Steady epitaxy of single-crystal graphite movies by isothermal carbon diffusion via nickel

[ad_1]

  • Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, H. et al. Half- and quarter-metals in rhombohedral trilayer graphene. Nature 598, 429–433 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Shi, Y. et al. Digital part separation in multilayer rhombohedral graphite. Nature 584, 210–214 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Z. et al. Commentary of microscale superlubricity in graphite. Phys. Rev. Lett. 108, 205503 (2012).

    Article 

    Google Scholar
     

  • Ghosh, S. et al. Dimensional crossover of thermal transport in few-layer graphene. Nat. Mater. 9, 555–558 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, Q., Zheng, J., Onishi, S., Crommie, M. F. & Zettl, A. Okay. Graphene electrostatic microphone and ultrasonic radio. Proc. Natl Acad. Sci. USA 112, 8942–8946 (2015).

    Article 
    CAS 

    Google Scholar
     

  • El-Kady, M. F., Robust, V., Dubin, S. & Kaner, R. B. Laser scribing of high-performance and versatile graphene-based electrochemical capacitors. Science 335, 1326–1330 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Li, P. C. Preparation of single-crystal graphite from melts. Nature 192, 864–865 (1961).

    Article 
    CAS 

    Google Scholar
     

  • Austerma, S. B., Myron, S. M. & Wagner, J. W. Development and characterization of graphite single crystals. Carbon 5, 551–557 (1967).


    Google Scholar
     

  • Inagaki, M. New Carbons: Management of Construction and Features (Elsevier Science, 2000).

  • Liu, S. L. & Loper, C. R. The formation of kish graphite. Carbon 29, 547–555 (1991).

    Article 
    CAS 

    Google Scholar
     

  • Chung, D. D. L. Overview graphite. J. Mater. Sci. 37, 1475–1489 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Karu, A. E. & Beer, M. Pyrolytic formation of extremely crystalline graphite movies. J. Appl. Phys. 37, 2179 (1966).

    Article 
    CAS 

    Google Scholar
     

  • Presland, A. E. & Walker, P. L. Development of single-crystal graphite by pyrolysis of acetylene over metals. Carbon 7, 1–8 (1969).

    Article 
    CAS 

    Google Scholar
     

  • Shelton, J. C., Patil, H. R. & Blakely, J. M. Equilibrium segregation of carbon to a nickel (111) floor: a floor part transition. Surf. Sci. 43, 493–520 (1974).

    Article 
    CAS 

    Google Scholar
     

  • Derbyshire, F. J., Presland, A. E. B. & Trimm, D. L. Graphite formation by dissolution-precipitation of carbon in cobalt, nickel and iron. Carbon 13, 111–113 (1975).

    Article 
    CAS 

    Google Scholar
     

  • Solar, Z. Z. et al. Development of graphene from strong carbon sources. Nature 468, 549–552 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Wang, X. B. et al. Three-dimensional strutted graphene grown by substrate-free sugar blowing for high-power-density supercapacitors. Nat. Commun. 4, 2905 (2013).

    Article 

    Google Scholar
     

  • Lehner, B. A. E. et al. Creation of conductive graphene supplies by bacterial discount utilizing Shewanella oneidensis. ChemistryOpen 8, 888–895 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Luong, D. X. et al. Gram-scale bottom-up flash graphene synthesis. Nature 577, 647–651 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kim, Okay. S. et al. Giant-scale sample development of graphene movies for stretchable clear electrodes. Nature 457, 706–710 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Baraton, L. et al. On the mechanisms of precipitation of graphene on nickel skinny movies. Europhys. Lett. 96, 46003 (2011).

    Article 

    Google Scholar
     

  • Yan, Z. et al. Development of bilayer graphene on insulating substrates. ACS Nano 5, 8187–8192 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Kwak, J. et al. Close to room-temperature synthesis of transfer-free graphene movies. Nat. Commun. 3, 645 (2012).

    Article 

    Google Scholar
     

  • Liu, S. et al. Single-crystal development of millimeter-sized monoisotopic hexagonal boron nitride. Chem. Mater. 30, 6222–6225 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Deokar, G. et al. Semi-transparent graphite movies development on Ni and their double-sided polymer-free switch. Sci. Rep. 10, 14703 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Shi, Z. Y. et al. Vapor-liquid-solid development of large-area multilayer hexagonal boron nitride on dielectric substrates. Nat. Commun. 11, 849 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lee, J. H. et al. Wafer-scale development of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science 344, 286–289 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Wu, T. et al. Quick development of inch-sized single-crystalline graphene from a managed single nucleus on Cu–Ni alloys. Nat. Mater. 15, 43–47 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Xu, X. Z. et al. Ultrafast epitaxial development of metre-sized single-crystal graphene on industrial Cu foil. Sci. Bull. 62, 1074–1080 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Lin, L. et al. In direction of super-clean graphene. Nat. Commun. 10, 1912 (2019).

    Article 

    Google Scholar
     

  • Wu, M. H. et al. Seeded development of huge single-crystal copper foils with high-index aspects. Nature 581, 406–410 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Meng, L. et al. Wrinkle networks in exfoliated multilayer graphene and different layered supplies. Carbon 156, 24–30 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Chatterjee, S. et al. Synthesis of extremely oriented graphite movies with a low wrinkle density and near-millimeter-scale lateral grains. Chem. Mater. 32, 3134–3143 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Peng, L. et al. Ultrahigh thermal conductive but superflexible graphene movies. Adv. Mater. 29, 1700589 (2017).

    Article 

    Google Scholar
     

  • Wang, B. et al. Ultrastiff, sturdy, and extremely thermally conductive crystalline graphitic movies with blended stacking order. Adv. Mater. 31, 1909039 (2019).


    Google Scholar
     

  • Lee, C., Wei, X. D., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic power of monolayer graphene. Science 321, 385–388 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, J. W., Wang, J. S. & Li, B. W. Younger’s modulus of graphene: a molecular dynamics research. Phys. Rev. B 80, 113405 (2009).

    Article 

    Google Scholar
     

  • Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Banszerus, L. et al. Ultrahigh-mobility graphene units from chemical vapor deposition on reusable copper. Sci. Adv. 1, e1500222 (2015).

    Article 

    Google Scholar
     

  • Wang, D. X., Liu, Y. F., Solar, D. Y., Yuan, Q. H. & Ding, F. Thermodynamics and kinetics of graphene development on Ni(111) and the origin of triangular-shaped graphene islands. J. Phys. Chem. C 122, 3334–3340 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Mostaani, E., Drummond, N. D. & Fal’ko, V. I. Quantum Monte Carlo calculation of the binding vitality of bilayer graphene. Phys. Rev. Lett. 115, 115501 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Kresse, G. & Furthmuller, J. Environment friendly iterative schemes for ab initio total-energy calculations utilizing a plane-wave foundation set. Phys. Rev. B 54, 11169–11186 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Kresse, G. & Furthmuller, J. Effectivity of ab initio total-energy calculations for metals and semiconductors utilizing a plane-wave foundation set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Perdew, J. P., Burke, Okay. & Ernzerhof, M. Generalized gradient approximation made easy. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS 

    Google Scholar
     

  • Henkelman, G., Uberuaga, B. P. & Jonsson, H. A climbing picture nudged elastic band methodology for locating saddle factors and minimal vitality paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Lander, J. J., Kern, H. E. & Seashore, A. L. Solubility and diffusion coefficient of carbon in nickel: response charges of nickel–carbon alloys with barium oxide. J. Appl. Phys. 23, 1305–1309 (1952).

    Article 
    CAS 

    Google Scholar
     

  • [ad_2]