[ad_1]
Li, Q., Lee, C., Carpick, R. W. & Hone, J. Substrate impact on thickness-dependent friction on graphene. Phys. Standing Solidi B 247, 2909–2914 (2010).
Solar, Y., Wang, R. & Liu, Okay. Substrate induced modifications in atomically skinny 2-dimensional semiconductors: fundamentals, engineering, and purposes. Appl. Phys. Rev. https://doi.org/10.1063/1.4974072 (2017).
Mammadov, S. et al. Work perform of graphene multilayers on SiC(0001). 2D Mater. https://doi.org/10.1088/2053-1583/4/1/015043 (2017).
Gao, Y. et al. Elastic coupling between layers in two-dimensional supplies. Nat. Mater. 14, 714–720 (2015).
Voiry, D. et al. Enhanced catalytic exercise in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 12, 850–855 (2013).
Bao, W. et al. Approaching the boundaries of transparency and conductivity in graphitic supplies by lithium intercalation. Nat. Commun. 5, 4224 (2014).
Xu, C., Xue, T., Qiu, W. & Kang, Y. Measurement impact of the interfacial mechanical habits of graphene on a stretchable substrate. ACS Appl. Mater. Interfaces 8, 27099–27106 (2016).
Jiang, T., Huang, R. & Zhu, Y. Interfacial sliding and buckling of monolayer graphene on a stretchable substrate. Adv. Funct. Mater. 24, 396–402 (2014).
Cho, J., Luo, J. J. & Daniel, I. M. Mechanical characterization of graphite/epoxy nanocomposites by multi-scale evaluation. Compos. Sci. Technol. 67, 2399–2407 (2007).
Seldin, E. J. & Nezbeda, C. W. Elastic constants and electron‐microscope observations of neutron‐irradiated compression‐annealed pyrolytic and single‐crystal graphite. J. Appl. Phys. 41, 3389–3400 (1970).
Savini, G. et al. Bending modes, elastic constants and mechanical stability of graphitic techniques. Carbon 49, 62–69 (2011).
Peng, Z., Chen, X., Fan, Y., Srolovitz, D. J. & Lei, D. Pressure engineering of 2D semiconductors and graphene: from pressure fields to band-structure tuning and photonic purposes. Mild Sci. Appl. 9, 190 (2020).
Kawai, S. et al. Superlubricity of graphene nanoribbons on gold surfaces. Science 351, 957–961 (2016).
Bunch, J. S. et al. Electromechanical resonators from graphene sheets. Science 315, 490–493 (2007).
Wang, Z. & Feng, P. X. L. Design of black phosphorus 2D nanomechanical resonators by exploiting the intrinsic mechanical anisotropy. 2D Mater. https://doi.org/10.1088/2053-1583/2/2/021001 (2015).
Chen, C. et al. Efficiency of monolayer graphene nanomechanical resonators with electrical readout. Nat. Nanotechnol. 4, 861–867 (2009).
Glavin, N. R., Muratore, C. & Snure, M. Towards 2D supplies for versatile electronics: alternatives and outlook. Oxford Open Mater. Sci. https://doi.org/10.1093/oxfmat/itaa002 (2021).
Alert, R. & Casademunt, J. Position of substrate stiffness in tissue spreading: wetting transition and tissue durotaxis. Langmuir 35, 7571–7577 (2019).
Qu, W., Bagchi, S., Chen, X., Chew, H. B. & Ke, C. Bending and interlayer shear moduli of ultrathin boron nitride nanosheet. J. Phys. D Appl. Phys. https://doi.org/10.1088/1361-6463/ab3953 (2019).
Chen, X., Yi, C. & Ke, C. Bending stiffness and interlayer shear modulus of few-layer graphene. Appl. Phys. Lett. https://doi.org/10.1063/1.4915075 (2015).
Kunc, J. et al. Impact of residual fuel composition on epitaxial development of graphene on SiC. Phys. Rev. Appl. https://doi.org/10.1103/PhysRevApplied.8.044011 (2017).
Kunc, J., Rejhon, M. & Hlidek, P. Hydrogen intercalation of epitaxial graphene and buffer layer probed by mid-infrared absorption and Raman spectroscopy. AIP Adv. https://doi.org/10.1063/1.5024132 (2018).
Rejhon, M. & Kunc, J. ZO phonon of a buffer layer and Raman mapping of hydrogenated buffer on SiC(0001). J. Raman Spectrosc. 50, 465–473 (2018).
Hass, J. et al. Why multilayer graphene on 4H–SiC(000(bar{1})) behaves like a single sheet of graphene. Phys. Rev. Lett. 100, 125504 (2008).
Filleter, T. & Bennewitz, R. Structural and frictional properties of graphene movies on SiC(0001) studied by atomic power microscopy. Phys. Rev. B https://doi.org/10.1103/PhysRevB.81.155412 (2010).
Filleter, T. et al. Friction and dissipation in epitaxial graphene movies. Phys. Rev. Lett. 102, 086102 (2009).
Lee, C. et al. Frictional traits of atomically skinny sheets. Science 328, 76–80 (2010).
Li, S. et al. The evolving high quality of frictional contact with graphene. Nature 539, 541–545 (2016).
Lavini, F. et al. Friction and work perform oscillatory habits for an excellent and odd variety of layers in polycrystalline MoS2. Nanoscale 10, 8304–8312 (2018).
Gao, Y. et al. Ultrahard carbon movie from epitaxial two-layer graphene. Nat. Nanotechnol. 13, 133–138 (2018).
Cellini, F., Gao, Y. & Riedo, E. Å-Indentation for non-destructive elastic moduli measurements of supported ultra-hard ultra-thin movies and nanostructures. Sci. Rep. https://doi.org/10.1038/s41598-019-40636-0 (2019).
Cellini, F. et al. Stress‐induced formation and mechanical properties of 2D diamond boron nitride. Adv. Sci. https://doi.org/10.1002/advs.202002541 (2020).
Blakslee, O. L., Proctor, D. G., Seldin, E. J., Spence, G. B. & Weng, T. Elastic constants of compression‐annealed pyrolytic graphite. J. Appl. Phys. 41, 3373–3382 (1970).
Xiao, J. R., Gama, B. A. & Gillespie, J. W. An analytical molecular structural mechanics mannequin for the mechanical properties of carbon nanotubes. Int. J. Solids Struct. 42, 3075–3092 (2005).
Tan, P. H. et al. The shear mode of multilayer graphene. Nat. Mater. 11, 294–300 (2012).
Emtsev, Okay. V., Speck, F., Seyller, T., Ley, L. & Riley, J. D. Interplay, development, and ordering of epitaxial graphene on SiC{0001} surfaces: a comparative photoelectron spectroscopy examine. Phys. Rev. B https://doi.org/10.1103/PhysRevB.77.155303 (2008).
Lauffer, P. et al. Atomic and digital construction of few-layer graphene on SiC(0001) studied with scanning tunneling microscopy and spectroscopy. Phys. Rev. B https://doi.org/10.1103/PhysRevB.77.155426 (2008).
Mallet, P. et al. Electron states of mono- and bilayer graphene on SiC probed by scanning-tunneling microscopy. Phys. Rev. B https://doi.org/10.1103/PhysRevB.76.041403 (2007).
Razado-Colambo, I. et al. Structural willpower of bilayer graphene on SiC(0001) utilizing synchrotron radiation photoelectron diffraction. Sci. Rep. 8, 10190 (2018).
Virojanadara, C. et al. Substrate orientation: a manner in the direction of increased high quality monolayer graphene development on 6H-SiC(0001). Surf. Sci. 603, L87–L90 (2009).
Speck, F. et al. The quasi-free-standing nature of graphene on H-saturated SiC(0001). Appl. Phys. Lett. https://doi.org/10.1063/1.3643034 (2011).
Lee, Okay. et al. Magnetotransport properties of quasi-free-standing epitaxial graphene bilayer on SiC: proof for Bernal stacking. Nano Lett. 11, 3624–3628 (2011).
Carpick, R. W., Ogletree, D. F. & Salmeron, M. Lateral stiffness: a brand new nanomechanical measurement for the willpower of shear strengths with friction power microscopy. Appl. Phys. Lett. 70, 1548–1550 (1997).
Lucas, M. et al. Hindered rolling and friction anisotropy in supported carbon nanotubes. Nat. Mater. 8, 876–881 (2009).
Cellini, F. et al. Epitaxial two-layer graphene beneath strain: diamene stiffer than diamond. FlatChem 10, 8–13 (2018).
Dong, Y. Results of substrate roughness and electron–phonon coupling on thickness-dependent friction of graphene. J. Phys. D Appl. Phys. https://doi.org/10.1088/0022-3727/47/5/055305 (2014).
Tomlinson, G. A. CVI. A molecular idea of friction. Lond. Edinb. Dublin Philos. Magazine. J. Sci. 7, 905–939 (1929).
Prandtl, L. Ein gedankenmodell zur kinetischen theorie der festen körper. Z. für Angew. Math. Mech. 8, 85–106 (1928).
Krylov, S. Y. & Frenken, J. W. M. The physics of atomic‐scale friction: fundamental concerns and open questions. Phys. Standing Solidi B 251, 711–736 (2014).
Zaloj, V., Urbakh, M. & Klafter, J. Atomic scale friction: what might be deduced from the response to a harmonic drive? Phys. Rev. Lett. 81, 1227–1230 (1998).
Kitahara, H. et al. Mechanical habits of single crystalline and polycrystalline silicon carbides evaluated by vickers indentation. J. Ceram. Soc. Jpn 109, 602–606 (2001).
Riedo, E., Palaci, I., Boragno, C. & Brune, H. The two/3 energy legislation dependence of capillary power on regular load in nanoscopic friction. J. Phys. Chem. B 108, 5324–5328 (2004).
Andersson, D. & De Wijn, A. S. Understanding the friction of atomically skinny layered supplies. Nat. Commun. https://doi.org/10.1038/s41467-019-14239-2 (2020).
[ad_2]