Relation between interfacial shear and friction power in 2D supplies

[ad_1]

  • Li, Q., Lee, C., Carpick, R. W. & Hone, J. Substrate impact on thickness-dependent friction on graphene. Phys. Standing Solidi B 247, 2909–2914 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Solar, Y., Wang, R. & Liu, Okay. Substrate induced modifications in atomically skinny 2-dimensional semiconductors: fundamentals, engineering, and purposes. Appl. Phys. Rev. https://doi.org/10.1063/1.4974072 (2017).

  • Mammadov, S. et al. Work perform of graphene multilayers on SiC(0001). 2D Mater. https://doi.org/10.1088/2053-1583/4/1/015043 (2017).

  • Gao, Y. et al. Elastic coupling between layers in two-dimensional supplies. Nat. Mater. 14, 714–720 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Voiry, D. et al. Enhanced catalytic exercise in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 12, 850–855 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Bao, W. et al. Approaching the boundaries of transparency and conductivity in graphitic supplies by lithium intercalation. Nat. Commun. 5, 4224 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Xu, C., Xue, T., Qiu, W. & Kang, Y. Measurement impact of the interfacial mechanical habits of graphene on a stretchable substrate. ACS Appl. Mater. Interfaces 8, 27099–27106 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, T., Huang, R. & Zhu, Y. Interfacial sliding and buckling of monolayer graphene on a stretchable substrate. Adv. Funct. Mater. 24, 396–402 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Cho, J., Luo, J. J. & Daniel, I. M. Mechanical characterization of graphite/epoxy nanocomposites by multi-scale evaluation. Compos. Sci. Technol. 67, 2399–2407 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Seldin, E. J. & Nezbeda, C. W. Elastic constants and electron‐microscope observations of neutron‐irradiated compression‐annealed pyrolytic and single‐crystal graphite. J. Appl. Phys. 41, 3389–3400 (1970).

    Article 
    CAS 

    Google Scholar
     

  • Savini, G. et al. Bending modes, elastic constants and mechanical stability of graphitic techniques. Carbon 49, 62–69 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Peng, Z., Chen, X., Fan, Y., Srolovitz, D. J. & Lei, D. Pressure engineering of 2D semiconductors and graphene: from pressure fields to band-structure tuning and photonic purposes. Mild Sci. Appl. 9, 190 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kawai, S. et al. Superlubricity of graphene nanoribbons on gold surfaces. Science 351, 957–961 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Bunch, J. S. et al. Electromechanical resonators from graphene sheets. Science 315, 490–493 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Z. & Feng, P. X. L. Design of black phosphorus 2D nanomechanical resonators by exploiting the intrinsic mechanical anisotropy. 2D Mater. https://doi.org/10.1088/2053-1583/2/2/021001 (2015).

  • Chen, C. et al. Efficiency of monolayer graphene nanomechanical resonators with electrical readout. Nat. Nanotechnol. 4, 861–867 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Glavin, N. R., Muratore, C. & Snure, M. Towards 2D supplies for versatile electronics: alternatives and outlook. Oxford Open Mater. Sci. https://doi.org/10.1093/oxfmat/itaa002 (2021).

  • Alert, R. & Casademunt, J. Position of substrate stiffness in tissue spreading: wetting transition and tissue durotaxis. Langmuir 35, 7571–7577 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Qu, W., Bagchi, S., Chen, X., Chew, H. B. & Ke, C. Bending and interlayer shear moduli of ultrathin boron nitride nanosheet. J. Phys. D Appl. Phys. https://doi.org/10.1088/1361-6463/ab3953 (2019).

  • Chen, X., Yi, C. & Ke, C. Bending stiffness and interlayer shear modulus of few-layer graphene. Appl. Phys. Lett. https://doi.org/10.1063/1.4915075 (2015).

  • Kunc, J. et al. Impact of residual fuel composition on epitaxial development of graphene on SiC. Phys. Rev. Appl. https://doi.org/10.1103/PhysRevApplied.8.044011 (2017).

  • Kunc, J., Rejhon, M. & Hlidek, P. Hydrogen intercalation of epitaxial graphene and buffer layer probed by mid-infrared absorption and Raman spectroscopy. AIP Adv. https://doi.org/10.1063/1.5024132 (2018).

  • Rejhon, M. & Kunc, J. ZO phonon of a buffer layer and Raman mapping of hydrogenated buffer on SiC(0001). J. Raman Spectrosc. 50, 465–473 (2018).

    Article 

    Google Scholar
     

  • Hass, J. et al. Why multilayer graphene on 4H–SiC(000(bar{1})) behaves like a single sheet of graphene. Phys. Rev. Lett. 100, 125504 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Filleter, T. & Bennewitz, R. Structural and frictional properties of graphene movies on SiC(0001) studied by atomic power microscopy. Phys. Rev. B https://doi.org/10.1103/PhysRevB.81.155412 (2010).

  • Filleter, T. et al. Friction and dissipation in epitaxial graphene movies. Phys. Rev. Lett. 102, 086102 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Lee, C. et al. Frictional traits of atomically skinny sheets. Science 328, 76–80 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Li, S. et al. The evolving high quality of frictional contact with graphene. Nature 539, 541–545 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Lavini, F. et al. Friction and work perform oscillatory habits for an excellent and odd variety of layers in polycrystalline MoS2. Nanoscale 10, 8304–8312 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Gao, Y. et al. Ultrahard carbon movie from epitaxial two-layer graphene. Nat. Nanotechnol. 13, 133–138 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Cellini, F., Gao, Y. & Riedo, E. Å-Indentation for non-destructive elastic moduli measurements of supported ultra-hard ultra-thin movies and nanostructures. Sci. Rep. https://doi.org/10.1038/s41598-019-40636-0 (2019).

  • Cellini, F. et al. Stress‐induced formation and mechanical properties of 2D diamond boron nitride. Adv. Sci. https://doi.org/10.1002/advs.202002541 (2020).

  • Blakslee, O. L., Proctor, D. G., Seldin, E. J., Spence, G. B. & Weng, T. Elastic constants of compression‐annealed pyrolytic graphite. J. Appl. Phys. 41, 3373–3382 (1970).

    Article 
    CAS 

    Google Scholar
     

  • Xiao, J. R., Gama, B. A. & Gillespie, J. W. An analytical molecular structural mechanics mannequin for the mechanical properties of carbon nanotubes. Int. J. Solids Struct. 42, 3075–3092 (2005).

    Article 

    Google Scholar
     

  • Tan, P. H. et al. The shear mode of multilayer graphene. Nat. Mater. 11, 294–300 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Emtsev, Okay. V., Speck, F., Seyller, T., Ley, L. & Riley, J. D. Interplay, development, and ordering of epitaxial graphene on SiC{0001} surfaces: a comparative photoelectron spectroscopy examine. Phys. Rev. B https://doi.org/10.1103/PhysRevB.77.155303 (2008).

  • Lauffer, P. et al. Atomic and digital construction of few-layer graphene on SiC(0001) studied with scanning tunneling microscopy and spectroscopy. Phys. Rev. B https://doi.org/10.1103/PhysRevB.77.155426 (2008).

  • Mallet, P. et al. Electron states of mono- and bilayer graphene on SiC probed by scanning-tunneling microscopy. Phys. Rev. B https://doi.org/10.1103/PhysRevB.76.041403 (2007).

  • Razado-Colambo, I. et al. Structural willpower of bilayer graphene on SiC(0001) utilizing synchrotron radiation photoelectron diffraction. Sci. Rep. 8, 10190 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Virojanadara, C. et al. Substrate orientation: a manner in the direction of increased high quality monolayer graphene development on 6H-SiC(0001). Surf. Sci. 603, L87–L90 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Speck, F. et al. The quasi-free-standing nature of graphene on H-saturated SiC(0001). Appl. Phys. Lett. https://doi.org/10.1063/1.3643034 (2011).

  • Lee, Okay. et al. Magnetotransport properties of quasi-free-standing epitaxial graphene bilayer on SiC: proof for Bernal stacking. Nano Lett. 11, 3624–3628 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Carpick, R. W., Ogletree, D. F. & Salmeron, M. Lateral stiffness: a brand new nanomechanical measurement for the willpower of shear strengths with friction power microscopy. Appl. Phys. Lett. 70, 1548–1550 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Lucas, M. et al. Hindered rolling and friction anisotropy in supported carbon nanotubes. Nat. Mater. 8, 876–881 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Cellini, F. et al. Epitaxial two-layer graphene beneath strain: diamene stiffer than diamond. FlatChem 10, 8–13 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Dong, Y. Results of substrate roughness and electron–phonon coupling on thickness-dependent friction of graphene. J. Phys. D Appl. Phys. https://doi.org/10.1088/0022-3727/47/5/055305 (2014).

  • Tomlinson, G. A. CVI. A molecular idea of friction. Lond. Edinb. Dublin Philos. Magazine. J. Sci. 7, 905–939 (1929).

    Article 
    CAS 

    Google Scholar
     

  • Prandtl, L. Ein gedankenmodell zur kinetischen theorie der festen körper. Z. für Angew. Math. Mech. 8, 85–106 (1928).

    Article 

    Google Scholar
     

  • Krylov, S. Y. & Frenken, J. W. M. The physics of atomic‐scale friction: fundamental concerns and open questions. Phys. Standing Solidi B 251, 711–736 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Zaloj, V., Urbakh, M. & Klafter, J. Atomic scale friction: what might be deduced from the response to a harmonic drive? Phys. Rev. Lett. 81, 1227–1230 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Kitahara, H. et al. Mechanical habits of single crystalline and polycrystalline silicon carbides evaluated by vickers indentation. J. Ceram. Soc. Jpn 109, 602–606 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Riedo, E., Palaci, I., Boragno, C. & Brune, H. The two/3 energy legislation dependence of capillary power on regular load in nanoscopic friction. J. Phys. Chem. B 108, 5324–5328 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Andersson, D. & De Wijn, A. S. Understanding the friction of atomically skinny layered supplies. Nat. Commun. https://doi.org/10.1038/s41467-019-14239-2 (2020).

  • [ad_2]