Human-muscle-inspired single fibre actuator with reversible percolation

[ad_1]

  • Rus, D. & Tolley, M. T. Design, fabrication and management of soppy robots. Nature 521, 467–475 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Gelebart, A. H. et al. Making waves in a photoactive polymer movie. Nature 546, 632–636 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Wehner, M. et al. Pneumatic power sources for autonomous and wearable delicate robotics. Delicate Robotic. 1, 263–274 (2014).

    Article 

    Google Scholar
     

  • He, Q., Wang, Z., Tune, Z. & Cai, S. Bioinspired design of vascular synthetic muscle. Adv. Mater. Technol. 4, 1800244 (2019).

    Article 

    Google Scholar
     

  • Palagi, S. et al. Structured gentle allows biomimetic swimming and versatile locomotion of photoresponsive delicate microrobots. Nat. Mater. 15, 647–653 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Yang, G. Z. et al. The grand challenges of science robotics. Sci. Robotic. 3, eaar7650 (2018).

    Article 

    Google Scholar
     

  • Tawfick, S. & Tang, Y. Stronger synthetic muscular tissues, with a twist. Science 365, 125–126 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Lima, M. D. et al. Electrically, chemically, and photonically powered torsional and tensile actuation of hybrid carbon nanotube yarn muscular tissues. Science 338, 928–932 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Chu, H. et al. Unipolar stroke, electroosmotic pump carbon nanotube yarn muscular tissues. Science 371, 494–498 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kanik, M. et al. Pressure-programmable fiber-based synthetic muscle. Science 365, 145–150 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Mu, J. et al. Sheath-run synthetic muscular tissues. Science 365, 150–155 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Yuan, J. et al. Form reminiscence nanocomposite fibers for untethered high-energy microengines. Science 365, 155–158 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Yang, Y. et al. Graphene-enabled superior and tunable photomechanical actuation in liquid crystalline elastomer nanocomposites. Adv. Mater. 27, 6376–6381 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Koerner, H., Worth, G., Pearce, N. A., Alexander, M. & Vaia, R. A. Remotely actuated polymer nanocomposites—stress-recovery of carbon-nanotube-filled thermoplastic elastomers. Nat. Mater. 3, 115–120 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Li, C., Liu, Y., Huang, X. & Jiang, H. Direct sun-driven synthetic heliotropism for photo voltaic power harvesting primarily based on a photo-thermomechanical liquid-crystal elastomer nanocomposite. Adv. Funct. Mater. 22, 5166–5174 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Yang, L., Setyowati, Ok., Li, A., Gong, S. & Chen, J. Reversible infrared actuation of carbon nanotube-liquid crystalline elastomer nanocomposites. Adv. Mater. 20, 2271–2275 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Kim, H. et al. Intelligently actuating liquid crystal elastomer‐carbon nanotube composites. Adv. Funct. Mater. 29, 1905063 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Ahir, S. V. & Terentjev, E. M. Photomechanical actuation in polymer–nanotube composites. Nat. Mater. 4, 491–495 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Liu, M. et al. Conductive carbon nanofiber interpenetrated graphene structure for ultra-stable sodiumion battery. Nat. Commun. 10, 3917 (2019).

    Article 

    Google Scholar
     

  • Al-Dhahebi, A. M., Gopinath, S. C. B. & Saheed, M. S. M. Graphene impregnated electrospun nanofiber sensing supplies: a complete overview on bridging laboratory set-up to trade. Nano Converg. 7, 27 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, J. et al. Multiscale deformations result in excessive toughness and circularly polarized emission in helical nacre-like fibres. Nat. Commun. 7, 10701 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Roberts, T. J. et al. Three-dimensional nature of skeletal muscle contraction. Physiology 34, 402–408 (2019).

    Article 

    Google Scholar
     

  • Raez, M. B., Hussain, M. S. & Mohd-Yasin, F. Strategies of EMG sign evaluation: detection, processing, classification and purposes. Biol. Proced. On-line 8, 11–35 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Ware, T. H., McConney, M. E., Wie, J. J., Tondiglia, V. P. & White, T. J. Actuating supplies. Voxelated liquid crystal elastomers. Science 347, 982–984 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Ohm, C., Brehmer, M. & Zentel, R. Liquid crystalline elastomers as actuators and sensors. Adv. Mater. 22, 3366–3387 (2010).

    Article 
    CAS 

    Google Scholar
     

  • White, T. J. & Broer, D. J. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nat. Mater. 14, 1087–1098 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Pei, Z. et al. Mouldable liquid-crystalline elastomer actuators with exchangeable covalent bonds. Nat. Mater. 13, 36–41 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Guin, T. et al. Layered liquid crystal elastomer actuators. Nat. Commun. 9, 2531 (2018).

    Article 

    Google Scholar
     

  • Lopez-Valdeolivas, M., Liu, D., Broer, D. J. & Sanchez-Somolinos, C. 4D printed actuators with soft-robotic features. Macromol. Speedy Commun. 39, 1700710 (2018).

    Article 

    Google Scholar
     

  • Kotikian, A., Truby, R. L., Boley, J. W., White, T. J. & Lewis, J. A. 3D printing of liquid crystal elastomeric actuators with spatially programed nematic order. Adv. Mater. 30, 1706164 (2018).

    Article 

    Google Scholar
     

  • Roach, D. J., Kuang, X., Yuan, C., Chen, Ok. & Qi, H. J. Novel ink for ambient situation printing of liquid crystal elastomers for 4D printing. Sensible Mater. Struct. 27, 125011 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Ambulo, C. P. et al. 4-dimensional printing of liquid crystal elastomers. ACS Appl. Mater. Interfaces 9, 37332–37339 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Kohlmeyer, R. R. & Chen, J. Wavelength-selective, IR light-driven hinges primarily based on liquid crystalline elastomer composites. Angew. Chem. Int. Ed. 52, 9234–9237 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Sasikala, S. P. et al. Graphene oxide liquid crystals: a frontier 2D delicate materials for graphene-based purposeful supplies. Chem. Soc. Rev. 47, 6013–6045 (2018).

    Article 

    Google Scholar
     

  • Kim, F., Cote, L. J. & Huangm, J. Graphene oxide: floor exercise and two-dimensional meeting. Adv. Mater. 22, 1954–1958 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Parvez, Ok. et al. Exfoliation of graphite into graphene in aqueous options of inorganic salts. J. Am. Chem. Soc. 136, 6083–6091 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Kim, D. W., Kim, Y. H., Jeong, H. S. & Jung, H. T. Direct visualization of large-area graphene domains and bounds by optical birefringency. Nat. Nanotechnol. 7, 29–34 (2011).

    Article 

    Google Scholar
     

  • Potts, J. R., Dreyer, D. R., Bielawski, C. W. & Ruoff, R. S. Graphene-based polymer nanocomposites. Polymer 52, 5–25 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Tang, T. T. et al. A tunable phonon–exciton Fano system in bilayer graphene. Nat. Nanotechnol. 5, 32–36 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Kim, Y. et al. Stretchable nanoparticle conductors with self-organized conductive pathways. Nature 500, 59–63 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Benveniste, Y. A brand new method to the applying of Mori-Tanaka’s idea in composite supplies. Mech. Mater. 6, 147–157 (1987).

    Article 

    Google Scholar
     

  • Azoug, A. et al. Viscoelasticity of the polydomain-monodomain transition in main-chain liquid crystal elastomers. Polymer 98, 165–171 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Döhler, D. et al. Tuning the self-healing response of poly(dimethylsiloxane)-based elastomers. ACS Appl. Poly. Mater. 2, 4127–4139 (2020).

    Article 

    Google Scholar
     

  • Papageorgiou, D. G., Kinloch, I. A. & Younger, R. J. Mechanical properties of graphene and graphene-based nanocomposites. Prog. Mater. Sci. 90, 75–127 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Lee, S., Amjadi, M., Pugno, N., Park, I. & Ryu, S. Computational evaluation of metallic nanowire-elastomer nanocomposite primarily based pressure sensors. AIP Adv. 5, 117233 (2015).

    Article 

    Google Scholar
     

  • Balandin, A. A. Thermal properties of graphene and nanostructured carbon supplies. Nat. Mater. 10, 569–581 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Savchuk, Ol. A., Carvajal, J. J., Massons, J., Aguiló, M. & Díaz, F. Dedication of photothermal conversion effectivity of graphene and graphene oxide by way of an integrating sphere technique. Carbon 103, 134–141 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Xie, Z. et al. The rise of 2D photothermal supplies past graphene for clear water manufacturing. Adv. Sci. 7, 1902236 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Yoon, H.-H., Kim, D.-Y., Jeong, Ok.-U. & Ahn, S.-Ok. Floor aligned main-chain liquid crystalline elastomers: tailor-made properties by the selection of amine chain extenders. Macromolecules 51, 1141–1149 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Ryu, S., Lee, S., Jung, J., Lee, J. & Kim, Y. Micromechanics-based homogenization of the efficient bodily properties of composites with an anisotropic matrix and interfacial imperfections. Entrance. Mater. 6, 21 (2019).

    Article 

    Google Scholar
     

  • Jung, J., Lee, S., Ryu, B. & Ryu, S. Investigation of efficient thermoelectric properties of composite with interfacial resistance utilizing micromechanics-based homogenisation. Int. J. Warmth Mass Transf. 144, 118620 (2019).

    Article 

    Google Scholar
     

  • Lee, S., Jung, J. & Ryu, S. Micromechanics-based prediction of the efficient properties of piezoelectric composite having interfacial imperfections. Compos. Struct. 240, 112076 (2020).

    Article 

    Google Scholar
     

  • Kim, I. H. et al. Mussel-inspired defect engineering of graphene liquid crystalline fibers for synergistic enhancement of mechanical energy and electrical conductivity. Adv. Mater. 30, 1803267 (2018).

    Article 

    Google Scholar
     

  • López, V. et al. Chemical vapor deposition restore of graphene oxide: a path to highly-conductive graphene monolayers. Adv. Mater. 21, 4683–4686 (2009).

    Article 

    Google Scholar
     

  • Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Gupta, A., Chen, G., Joshi, P., Tadigadapa, S. & Eklund, P. C. Raman scattering from high-frequency phonons in supported n-graphene layer movies. Nano Lett. 6, 2667–2673 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Li, D., Muller, M. B., Gilje, S., Kaner, R. B. & Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3, 101–105 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Madden, J. D. W. et al. Synthetic muscle know-how: bodily ideas and naval prospects. IEEE J. Ocean. Eng. 29, 706–728 (2004).

    Article 

    Google Scholar
     

  • Chai, P. & Millard, D. Flight and dimension constraints: hovering efficiency of enormous hummingbirds beneath maximal loading. J. Exp. Biol. 200, 2757–2763 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Rome, L. C. & Swank, D. The affect of temperature on energy output of scup pink muscle throughout cyclical size modifications. J. Exp. Biol. 171, 261–281 (1992).

    Article 
    CAS 

    Google Scholar
     

  • Stevenson, R. D. & Josephson, R. Ok. Results of working frequency and temperature on mechanical energy output from moth flight muscle. J. Exp. Biol. 149, 61–78 (1990).

    Article 

    Google Scholar
     

  • Wang, L. et al. A room-temperature two-stage thiol–ene photoaddition method in the direction of monodomain liquid crystalline elastomers. Polym. Chem. 8, 1364–1370 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Luo, C. et al. 3D printing of liquid crystal elastomer foams for enhanced power dissipation beneath mechanical insult. ACS Appl. Mater. Interfaces 13, 12698–12708 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Urayama, Ok., Mashita, R., Kobayashi, I. & Takigawa, T. Stretching-induced director rotation in skinny movies of liquid crystal elastomers with homeotropic alignment. Macromolecules 40, 7665–7670 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Michal, B. T., McKenzie, B. M., Felder, S. E. & Rowan, S. J. Metallo-, thermo-, and photoresponsive form reminiscence and actuating liquid crystalline elastomers. Macromolecules 48, 3239–3246 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Chen, L. et al. Healable and rearrangeable networks of liquid crystal elastomers enabled by diselenide bonds. Angew. Chem. Int. Ed. 60, 16394–16398 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ishige, R., Tagawa, Ok. O. H., Niwano, H., Tokita, M. & Watanabe, J. Elongation habits of a main-chain smectic liquid crystalline elastomer. Macromolecules 41, 7566–7570 (2008).

    Article 
    CAS 

    Google Scholar
     

  • He, Q., Wang, Z., Wang, Y., Tune, Z. & Cai, S. Recyclable and self-repairable fluid-driven liquid crystal elastomer actuator. ACS Appl. Mater. Interfaces 12, 35464–35474 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Clarke, S. M., Terentjev, E. M., Kundler, I. I. & Finkelmann, H. Texture evolution throughout the polydomain-monodomain transition in nematic elastomers. Macromolecules 31, 4862–4872 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Komp, A. & Finkelmann, H. A brand new kind of macroscopically oriented smectic-A liquid crystal elastomer. Macromol. Speedy Commun. 28, 55–62 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Z. et al. Three-dimensional printing of functionally graded liquid crystal elastomer. Sci. Adv. 6, eabc0034 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ortiz, C., Wagner, M., Bhargava, N., Ober, C. Ok. & Kramer, E. J. Deformation of a polydomain, smectic liquid crystalline elastomer. Macromolecules 31, 8531–8539 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Naciri, J. et al. Nematic elastomer fiber actuator. Macromolecules 36, 8499–8505 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Liu, L. et al. Aggregation-induced emission luminogen-functionalized liquid crystal elastomer delicate actuators. Macromolecules 51, 4516–4524 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Liu, L., Liu, M. H., Deng, L. L., Lin, B. P. & Yang, H. Close to-infrared chromophore functionalized delicate actuator with ultrafast photoresponsive pace and superior mechanical property. J. Am. Chem. Soc. 139, 11333–11336 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Lu, H. F., Wang, M., Chen, X. M., Lin, B. P. & Yang, H. Interpenetrating liquid-crystal polyurethane/polyacrylate elastomer with ultrastrong mechanical property. J. Am. Chem. Soc. 141, 14364–14369 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Kent, T. A., Ford, M. J., Markvicka, E. J. & Majidi, C. Delicate actuators utilizing liquid crystal elastomers with encapsulated liquid metallic joule heaters. Multifunct. Mater. 3, 025003 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Liu, J. et al. Shaping and locomotion of soppy robots utilizing filament actuators constituted of liquid crystal elastomer–carbon nanotube composites. Adv. Intell. Syst. 2, 1900163 (2020).

    Article 

    Google Scholar
     

  • Wang, Y., Wang, Z., He, Q., Iyer, P. & Cai, S. Electrically managed delicate actuators with a number of and reprogrammable actuation modes. Adv. Intell. Syst. 2, 1900177 (2020).

    Article 

    Google Scholar
     

  • Li, C., Liu, Y., Lo, C.-W. & Jiang, H. Reversible white-light actuation of carbon nanotube integrated liquid crystalline elastomer nanocomposites. Delicate Matter 7, 7511–7516 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Tian, H. et al. Polydopamine-coated main-chain liquid crystal elastomer as optically pushed synthetic muscle. ACS Appl. Mater. Interfaces 10, 8307–8316 (2018).

    Article 
    CAS 

    Google Scholar
     

  • He, Q. et al. Electrospun liquid crystal elastomer microfiber actuator. Sci. Robotic. 6, eabi9704 (2021).

    Article 

    Google Scholar
     

  • He, Q. et al. Electrically managed liquid crystal elastomer-based delicate tubular actuator with multimodal actuation. Sci. Adv. 5, eaax5746 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Li, S. et al. Digital gentle processing of liquid crystal elastomers for self-sensing synthetic muscular tissues. Sci. Adv. 7, eabg3677 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Saed, M. O. et al. Excessive pressure actuation liquid crystal elastomers by way of modulation of mesophase construction. Delicate Matter 13, 7537–7547 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Kim, H., Boothby, J. M., Ramachandran, S., Lee, C. D. & Ware, T. H. Powerful, shape-changing supplies: crystallized liquid crystal elastomers. Macromolecules 50, 4267–4275 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Rafsanjani, A., Zhang, Y., Liu, B., Rubinstein, S. M. & Bertoldi, Ok. Kirigami skins make a easy delicate actuator crawl. Sci. Robotic. 3, eaar7555 (2018).

    Article 

    Google Scholar
     

  • Zou, J., Lin, Y., Ji, C. & Yang, H. A reconfigurable omnidirectional delicate robotic primarily based on caterpillar locomotion. Delicate Robotic. 5, 164 (2018).

    Article 

    Google Scholar
     

  • Li, W.-B., Zhang, W.-M., Zou, H.-X., Peng, Z.-Ok. & Meng, G. Multisegment annular dielectric elastomer actuators for delicate robots. Sensible Mater. Struct. 27, 115024 (2018).

    Article 

    Google Scholar
     

  • Xiao, Y. et al. Anisotropic electroactive elastomer for extremely maneuverable delicate robotics. Nanoscale 12, 7514–7521 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wang, C. et al. Delicate ultrathin electronics innervated adaptive absolutely delicate robots. Adv. Mater. 30, 1706695 (2018).

    Article 

    Google Scholar
     

  • Rogóz, M., Zeng, H., Xuan, C., Wiersma, D. S. & Wasylczyk, P. Mild-driven delicate robotic mimics caterpillar locomotion in pure scale. Adv. Choose. Mater. 4, 1689–1694 (2016).

    Article 

    Google Scholar
     

  • Tang, X., Li, Ok., Liu, Y., Zhou, D. & Zhao, J. A delicate crawling robotic pushed by single twisted and coiled actuator. Sens. Actuator A Phys. 291, 80–86 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Lu, H. et al. A bioinspired multilegged delicate millirobot that features in each dry and moist circumstances. Nat. Commun. 9, 3944 (2018).

    Article 

    Google Scholar
     

  • [ad_2]