Close to-unity Raman β-factor of surface-enhanced Raman scattering in a waveguide

[ad_1]

  • Camp, C. H. Jr & Cicerone, M. T. Chemically delicate bioimaging with coherent Raman scattering. Nat. Photonics 9, 295–305 (2015).

    CAS 

    Google Scholar
     

  • Hümmer, T. et al. Cavity-enhanced Raman microscopy of particular person carbon nanotubes. Nat. Commun. 7, 12155 (2016).


    Google Scholar
     

  • Dhakal, A. et al. Nanophotonic waveguide enhanced Raman spectroscopy of organic submonolayers. ACS Photonics 3, 2141–2149 (2016).

    CAS 

    Google Scholar
     

  • Holmstrom, S. A. et al. Hint fuel Raman spectroscopy utilizing functionalized waveguides. Optica 3, 891–896 (2016).

    CAS 

    Google Scholar
     

  • Eslami, S. & Palomba, S. Built-in enhanced Raman scattering: a overview. Nano Converg. 8, 41 (2021).

    CAS 

    Google Scholar
     

  • Ettabib, M. A. et al. Waveguide enhanced Raman spectroscopy for biosensing: a overview. ACS Sens. 6, 2025–2045 (2021).

    CAS 

    Google Scholar
     

  • Wong, H. M. Okay., Dezfouli, M. Okay., Solar, L., Hughes, S. & Helmy, A. S. Nanoscale plasmonic slot waveguides for enhanced Raman spectroscopy. Phys. Rev. B 98, 085124 (2018).

    CAS 

    Google Scholar
     

  • Turk, N. et al. Comparability of free-space and waveguide-based SERS platforms. Nanomaterials (Basel) 9, 1401 (2019).

    CAS 

    Google Scholar
     

  • Raza, A. et al. ALD assisted nanoplasmonic slot waveguide for on-chip enhanced Raman spectroscopy. APL Photonics 3, 116105 (2018).


    Google Scholar
     

  • van Exter, M. P., Nienhuis, G. & Woerdman, J. P. Two easy expressions for the spontaneous emission issue β. Phys. Rev. A 54, 3553–3558 (1996).


    Google Scholar
     

  • Schlücker, S. Floor-enhanced Raman spectroscopy: ideas and chemical functions. Angew. Chem. Int. Ed. 53, 4756–4795 (2014).


    Google Scholar
     

  • Wang, D., Zhu, W., Greatest, M. D., Camden, J. P. & Crozier, Okay. B. Directional Raman scattering from single molecules within the feed gaps of optical antennas. Nano Lett. 13, 2194–2198 (2013).

    CAS 

    Google Scholar
     

  • Stockman, M. I. Nanofocusing of optical vitality in tapered plasmonic waveguides. Phys. Rev. Lett. 93, 137404 (2004).


    Google Scholar
     

  • Nielsen, M. P. et al. Adiabatic nanofocusing in hybrid hole plasmon waveguides on the silicon-on-insulator platform. Nano Lett. 16, 1410–1414 (2016).

    CAS 

    Google Scholar
     

  • Nielsen, M. P., Shi, X., Dichtl, P., Maier, S. A. & Oulton, R. F. Large nonlinear response at a plasmonic nanofocus drives environment friendly four-wave mixing. Science 358, 1179–1181 (2017).

    CAS 

    Google Scholar
     

  • Purcell, E. M. Spontaneous emission chances at radio frequencies. Phys. Rev. 69, 681 (1946).


    Google Scholar
     

  • Sorger, V. J. et al. Strongly enhanced molecular fluorescence inside a nanoscale waveguide hole. Nano Lett. 11, 4907–4911 (2011).

    CAS 

    Google Scholar
     

  • Arcari, M. et al. Close to-unity coupling effectivity of a quantum emitter to a photonic crystal waveguide. Phys. Rev. Lett. 113, 093603 (2014).

    CAS 

    Google Scholar
     

  • Ma, R.-M. & Oulton, R. F. Purposes of nanolasers. Nat. Nanotechnol. 14, 12–22 (2019).

    CAS 

    Google Scholar
     

  • Azzam, S. I. et al. Ten years of spasers and plasmonic nanolasers. Mild Sci. Appl. 9, 90 (2020).

    CAS 

    Google Scholar
     

  • Hartschuh, A., Sánchez, E. J., Xie, X. S. & Novotny, L. Excessive-resolution near-field Raman microscopy of single-walled carbon nanotubes. Phys. Rev. Lett. 90, 095503 (2003).


    Google Scholar
     

  • Langer, J. et al. Current and way forward for surface-enhanced Raman scattering. ACS Nano 14, 28–117 (2020).

    CAS 

    Google Scholar
     

  • Fleischmann, M., Hendra, P. J. & McQuillan, A. J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26, 163–166 (1974).

    CAS 

    Google Scholar
     

  • Jeanmaire, D. L. & Van Duyne, R. P. Floor Raman spectroelectrochemistry: half I. Heterocyclic, fragrant, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. Interfacial Electrochem. 84, 1–20 (1977).

    CAS 

    Google Scholar
     

  • Kühler, P. et al. Plasmonic DNA-origami nanoantennas for surface-enhanced Raman spectroscopy. Nano Lett. 14, 2914–2919 (2014).


    Google Scholar
     

  • Peyskens, F., Dhakal, A., Van Dorpe, P., Le Thomas, N. & Baets, R. Floor enhanced Raman spectroscopy utilizing a single mode nanophotonic-plasmonic platform. ACS Photonics 3, 102–108 (2016).

    CAS 

    Google Scholar
     

  • Chen, C. et al. Focusing plasmons in nanoslits for surface-enhanced Raman scattering. Small 5, 2876–2882 (2009).

    CAS 

    Google Scholar
     

  • Lim, D.-Okay. et al. Extremely uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm inside hole. Nat. Nanotechnol. 6, 452–460 (2011).

    CAS 

    Google Scholar
     

  • Peyskens, F., Wuytens, P., Raza, A., Dorpe, P. V. & Baets, R. Waveguide excitation and assortment of surface-enhanced Raman scattering from a single plasmonic antenna. Nanophotonics 7, 1299–1306 (2018).

    CAS 

    Google Scholar
     

  • Itoh, T., Yamamoto, Y. S., Kitahama, Y. & Balachandran, J. One-dimensional plasmonic hotspots positioned between silver nanowire dimers evaluated by surface-enhanced resonance Raman scattering. Phys. Rev. B 95, 115441 (2017).


    Google Scholar
     

  • Yoon, I. et al. Single nanowire on a movie as an environment friendly SERS-active platform. J. Am. Chem. Soc. 131, 758–762 (2009).

    CAS 

    Google Scholar
     

  • Alberti, S., Datta, A. & Jágerská, J. Built-in nanophotonic waveguide-based gadgets for IR and Raman fuel spectroscopy. Sensors 21, 7224 (2021).

    CAS 

    Google Scholar
     

  • Zhang, C. et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 498, 82–86 (2013).

    CAS 

    Google Scholar
     

  • De Angelis, F. et al. Nanoscale chemical mapping utilizing three-dimensional adiabatic compression of floor plasmon polaritons. Nat. Nanotechnol. 5, 67–72 (2010).


    Google Scholar
     

  • Hartschuh, A., Sánchez, E. J., Xie, X. S. & Novotny, L. Excessive-resolution near-field Raman microscopy of single-walled carbon nanotubes. Phys. Rev. Lett. 90, 095503 (2003).


    Google Scholar
     

  • Kriesch, A. et al. Purposeful plasmonic nanocircuits with low insertion and propagation losses. Nano Lett. 13, 4539–4545 (2013).

    CAS 

    Google Scholar
     

  • Geisler, P. et al. Multimode plasmon excitation and in situ evaluation in top-down fabricated nanocircuits. Phys. Rev. Lett. 111, 183901 (2013).


    Google Scholar
     

  • Huang, Okay. C. Y. et al. Electrically pushed subwavelength optical nanocircuits. Nat. Photonics 8, 244–249 (2014).

    CAS 

    Google Scholar
     

  • Andryieuski, A. et al. Direct characterization of plasmonic slot waveguides and nanocouplers. Nano Lett. 14, 3925–3929 (2014).

    CAS 

    Google Scholar
     

  • Huang, J.-S., Feichtner, T., Biagioni, P. & Hecht, B. Impedance matching and emission properties of nanoantennas in an optical nanocircuit. Nano Lett. 9, 1897–1902 (2009).

    CAS 

    Google Scholar
     

  • Schörner, C., Adhikari, S. & Lippitz, M. A single-crystalline silver plasmonic circuit for seen quantum emitters. Nano Lett. 19, 3238–3243 (2019).


    Google Scholar
     

  • Wen, J., Romanov, S. & Peschel, U. Excitation of plasmonic hole waveguides by nanoantennas. Decide. Categorical 17, 5925–5932 (2009).

    CAS 

    Google Scholar
     

  • Lai, C.-H. et al. Close to infrared surface-enhanced Raman scattering based mostly on star-shaped gold/silver nanoparticles and hyperbolic metamaterial. Sci. Rep. 7, 5446 (2017).


    Google Scholar
     

  • Afridi, A. & Kocabaş, Ş. E. Beam steering and impedance matching of plasmonic horn nanoantennas. Decide. Categorical 24, 25647–25652 (2016).


    Google Scholar
     

  • Foerster, B. et al. Chemical interface damping depends upon electrons reaching the floor. ACS Nano 11, 2886–2893 (2017).

    CAS 

    Google Scholar
     

  • Brown, B. S. & Hartland, G. V. Chemical interface damping for propagating floor plasmon polaritons in gold nanostripes. J. Chem. Phys. 152, 024707 (2020).


    Google Scholar
     

  • Jones, R. R., Hooper, D. C., Zhang, L., Wolverson, D. & Valev, V. Okay. Raman methods: fundamentals and frontiers. Nanoscale Res. Lett. 14, 231 (2019).


    Google Scholar
     

  • Khurgin, J. B. & Noginov, M. A. How do the Purcell issue, the Q-factor, and the beta issue have an effect on the laser threshold? Laser Photonics Rev. 15, 2000250 (2021).

    CAS 

    Google Scholar
     

  • [ad_2]