A common one-step plug-and-probe strategy to top-gated transistors for quickly probing delicate digital supplies

[ad_1]

  • Moore, G. E. Cramming extra parts onto built-in circuits, reprinted from Electronics, quantity 38, quantity 8, April 19, 1965, pp. 114 ff. IEEE J. Stable-State Circuits 11, 33–35 (2006).

  • Meindl, J. D., Chen, Q. & Davis, J. A. Limits on silicon nanoelectronics for terascale integration. Science 293, 2044–2049 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Worldwide Roadmap for Gadgets and Techniques (IEEE, 2021). https://irds.ieee.org/editions/2021

  • Sze, S. M. & Ng, Okay. Okay. Physics of Semiconductor Gadgets (2006).

  • Keyes, R. W. Elementary limits of silicon expertise. Proc. IEEE 89, 227–239 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, G. Q., Graef, M. & Roosmalen, F. V. The rationale and paradigm of ‘greater than Moore’. In 56th Digital Parts and Know-how Convention, pp. 151–157 (IEEE, 2006).

  • Fiori, G. et al. Electronics based mostly on two-dimensional supplies. Nat. Nanotechnol. 9, 768–779 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Y. et al. Guarantees and prospects of two-dimensional transistors. Nature 591, 43–53 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Nie, W. et al. Excessive-efficiency solution-processed perovskite photo voltaic cells with millimeter-scale grains. Science 347, 522–525 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Cao, Y. et al. Perovskite light-emitting diodes based mostly on spontaneously fashioned submicrometre-scale buildings. Nature 562, 249–253 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Chhowalla, M., Jena, D. & Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 1, 16052 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Akinwande, D., Petrone, N. & Hone, J. Two-dimensional versatile nanoelectronics. Nat. Commun. 5, 5678 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Leijtens, T., Bush, Okay. A., Prasanna, R. & McGehee, M. D. Alternatives and challenges for tandem photo voltaic cells utilizing metallic halide perovskite semiconductors. Nat. Vitality 3, 828–838 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Liu, X.-Okay. et al. Metallic halide perovskites for light-emitting diodes. Nat. Mater. 20, 10–21 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yumoto, G. et al. Robust spin–orbit coupling inducing Autler–Townes impact in lead halide perovskite nanocrystals. Nat. Commun. 12, 3026 (2021).

    Article 

    Google Scholar
     

  • Kim, H. G. & Lee, H.-B.-R. Atomic layer deposition on 2D supplies. Chem. Mater. 29, 3809–3826 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Illarionov, Y. Y. et al. Insulators for 2D nanoelectronics: the hole to bridge. Nat. Commun. 11, 3385 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Jeon, J. H., Jerng, S.-Okay., Akbar, Okay. & Chun, S.-H. Hydrophobic floor remedy and interrupted atomic layer deposition for extremely resistive Al2O3 movies on graphene. ACS Appl. Mater. Interfaces 8, 29637–29641 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Li, W. et al. Uniform and ultrathin high-κ gate dielectrics for two-dimensional digital gadgets. Nat. Electron. 2, 563–571 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Sheng, Y. et al. Gate stack engineering in MoS2 field-effect transistor for lowered channel doping and hysteresis impact. Adv. Electron. Mater. 7, 2000395 (2021).

    Article 
    CAS 

    Google Scholar
     

  • McDonnell, S. et al. HfO2 on MoS2 by atomic layer deposition: adsorption mechanisms and thickness scalability. ACS Nano 7, 10354–10361 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Xuan, Y. et al. Atomic-layer-deposited nanostructures for graphene-based nanoelectronics. Appl. Phys. Lett. 92, 013101 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Straus, D. B., Guo, S., Abeykoon, A. M. M. & Cava, R. J. Understanding the instability of the halide perovskite CsPbI3 via temperature-dependent structural evaluation. Adv. Mater. 32, 2001069 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Senanayak Satyaprasad, P. et al. Understanding cost transport in lead iodide perovskite thin-film field-effect transistors. Sci. Adv. 3, e1601935 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Schulman, D. S., Arnold, A. J. & Das, S. Contact engineering for 2D supplies and gadgets. Chem. Soc. Rev. 47, 3037–3058 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Haick, H., Niitsoo, O., Ghabboun, J. & Cahen, D. Electrical contacts to natural molecular movies by metallic evaporation: impact of contacting particulars. J. Phys. Chem. C 111, 2318–2329 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Liao, L. et al. Excessive-κ oxide nanoribbons as gate dielectrics for prime mobility top-gated graphene transistors. Proc. Natl Acad. Sci. USA 107, 6711 (2010).

    Article 

    Google Scholar
     

  • Liu, Y. et al. Van der Waals heterostructures and gadgets. Nat. Rev. Mater. 1, 16042 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Y., Huang, Y. & Duan, X. Van der Waals integration earlier than and past two-dimensional supplies. Nature 567, 323–333 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Wang, P. & Duan, X. Probing and pushing the restrict of rising digital supplies through van der Waals integration. MRS Bull. 46, 534–546 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lee, G.-H. et al. Versatile and clear MoS2 field-effect transistors on hexagonal boron nitride–graphene heterostructures. ACS Nano 7, 7931–7936 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Illarionov, Y. Y. et al. Ultrathin calcium fluoride insulators for two-dimensional field-effect transistors. Nat. Electron. 2, 230–235 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Liao, L. et al. Excessive-performance top-gated graphene-nanoribbon transistors utilizing zirconium oxide nanowires as high-dielectric-constant gate dielectrics. Adv. Mater. 22, 1941–1945 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Liao, L. et al. High-gated graphene nanoribbon transistors with ultrathin high-okay dielectrics. Nano Lett. 10, 1917–1921 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Liao, L. et al. Excessive-speed graphene transistors with a self-aligned nanowire gate. Nature 467, 305–308 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Cheng, R. et al. Excessive-frequency self-aligned graphene transistors with transferred gate stacks. Proc. Natl Acad. Sci. USA 109, 11588 (2012).

    Article 

    Google Scholar
     

  • Cheng, R. et al. Few-layer molybdenum disulfide transistors and circuits for high-speed versatile electronics. Nat. Commun. 5, 5143 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Y. et al. Towards barrier free contact to molybdenum disulfide utilizing graphene electrodes. Nano Lett. 15, 3030–3034 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Y. et al. Approaching the Schottky–Mott restrict in van der Waals metallic–semiconductor junctions. Nature 557, 696–700 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Chen, P. et al. Approaching the intrinsic exciton physics restrict in two-dimensional semiconductor diodes. Nature 599, 404–410 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wang, J. et al. Transferred metallic gate to 2D semiconductors for sub-1 V operation and close to excellent subthreshold slope. Sci. Adv. 7: eabf8744.

  • Wang, Y. et al. Probing photoelectrical transport in lead halide perovskites with van der Waals contacts. Nat. Nanotechnol. 15, 768–775 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Manchanda, L. & Gurvitch, M. Yttrium oxide/silicon dioxide: a brand new dielectric construction for VLSI/ULSI circuits. IEEE Electron System Lett. 9, 180–182 (1988).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Z. et al. Progress and efficiency of yttrium oxide as an excellent high-κ gate dielectric for carbon-based electronics. Nano Lett. 10, 2024–2030 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Durand, C. et al. Electrical property enhancements of yttrium oxide-based metallic–insulator–metallic capacitors. J. Vac. Sci. Technol. A 24, 459–466 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Liu, H. & Ye, P. D. MoS2 dual-gate MOSFET with atomic-layer-deposited Al2O3 as top-gate dielectric. IEEE Electron System Lett. 33, 546–548 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Gurarslan, A. et al. Floor-energy-assisted excellent switch of centimeter-scale monolayer and few-layer MoS2 movies onto arbitrary substrates. ACS Nano 8, 11522–11528 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Li, T. et al. Epitaxial development of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 16, 1201–1207 (2021).

    Article 
    CAS 

    Google Scholar
     

  • [ad_2]