[ad_1]
Moore, G. E. Cramming extra parts onto built-in circuits, reprinted from Electronics, quantity 38, quantity 8, April 19, 1965, pp. 114 ff. IEEE J. Stable-State Circuits 11, 33–35 (2006).
Meindl, J. D., Chen, Q. & Davis, J. A. Limits on silicon nanoelectronics for terascale integration. Science 293, 2044–2049 (2001).
Worldwide Roadmap for Gadgets and Techniques (IEEE, 2021). https://irds.ieee.org/editions/2021
Sze, S. M. & Ng, Okay. Okay. Physics of Semiconductor Gadgets (2006).
Keyes, R. W. Elementary limits of silicon expertise. Proc. IEEE 89, 227–239 (2001).
Zhang, G. Q., Graef, M. & Roosmalen, F. V. The rationale and paradigm of ‘greater than Moore’. In 56th Digital Parts and Know-how Convention, pp. 151–157 (IEEE, 2006).
Fiori, G. et al. Electronics based mostly on two-dimensional supplies. Nat. Nanotechnol. 9, 768–779 (2014).
Liu, Y. et al. Guarantees and prospects of two-dimensional transistors. Nature 591, 43–53 (2021).
Nie, W. et al. Excessive-efficiency solution-processed perovskite photo voltaic cells with millimeter-scale grains. Science 347, 522–525 (2015).
Cao, Y. et al. Perovskite light-emitting diodes based mostly on spontaneously fashioned submicrometre-scale buildings. Nature 562, 249–253 (2018).
Chhowalla, M., Jena, D. & Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 1, 16052 (2016).
Akinwande, D., Petrone, N. & Hone, J. Two-dimensional versatile nanoelectronics. Nat. Commun. 5, 5678 (2014).
Leijtens, T., Bush, Okay. A., Prasanna, R. & McGehee, M. D. Alternatives and challenges for tandem photo voltaic cells utilizing metallic halide perovskite semiconductors. Nat. Vitality 3, 828–838 (2018).
Liu, X.-Okay. et al. Metallic halide perovskites for light-emitting diodes. Nat. Mater. 20, 10–21 (2021).
Yumoto, G. et al. Robust spin–orbit coupling inducing Autler–Townes impact in lead halide perovskite nanocrystals. Nat. Commun. 12, 3026 (2021).
Kim, H. G. & Lee, H.-B.-R. Atomic layer deposition on 2D supplies. Chem. Mater. 29, 3809–3826 (2017).
Illarionov, Y. Y. et al. Insulators for 2D nanoelectronics: the hole to bridge. Nat. Commun. 11, 3385 (2020).
Jeon, J. H., Jerng, S.-Okay., Akbar, Okay. & Chun, S.-H. Hydrophobic floor remedy and interrupted atomic layer deposition for extremely resistive Al2O3 movies on graphene. ACS Appl. Mater. Interfaces 8, 29637–29641 (2016).
Li, W. et al. Uniform and ultrathin high-κ gate dielectrics for two-dimensional digital gadgets. Nat. Electron. 2, 563–571 (2019).
Sheng, Y. et al. Gate stack engineering in MoS2 field-effect transistor for lowered channel doping and hysteresis impact. Adv. Electron. Mater. 7, 2000395 (2021).
McDonnell, S. et al. HfO2 on MoS2 by atomic layer deposition: adsorption mechanisms and thickness scalability. ACS Nano 7, 10354–10361 (2013).
Xuan, Y. et al. Atomic-layer-deposited nanostructures for graphene-based nanoelectronics. Appl. Phys. Lett. 92, 013101 (2008).
Straus, D. B., Guo, S., Abeykoon, A. M. M. & Cava, R. J. Understanding the instability of the halide perovskite CsPbI3 via temperature-dependent structural evaluation. Adv. Mater. 32, 2001069 (2020).
Senanayak Satyaprasad, P. et al. Understanding cost transport in lead iodide perovskite thin-film field-effect transistors. Sci. Adv. 3, e1601935 (2017).
Schulman, D. S., Arnold, A. J. & Das, S. Contact engineering for 2D supplies and gadgets. Chem. Soc. Rev. 47, 3037–3058 (2018).
Haick, H., Niitsoo, O., Ghabboun, J. & Cahen, D. Electrical contacts to natural molecular movies by metallic evaporation: impact of contacting particulars. J. Phys. Chem. C 111, 2318–2329 (2007).
Liao, L. et al. Excessive-κ oxide nanoribbons as gate dielectrics for prime mobility top-gated graphene transistors. Proc. Natl Acad. Sci. USA 107, 6711 (2010).
Liu, Y. et al. Van der Waals heterostructures and gadgets. Nat. Rev. Mater. 1, 16042 (2016).
Liu, Y., Huang, Y. & Duan, X. Van der Waals integration earlier than and past two-dimensional supplies. Nature 567, 323–333 (2019).
Wang, P. & Duan, X. Probing and pushing the restrict of rising digital supplies through van der Waals integration. MRS Bull. 46, 534–546 (2021).
Lee, G.-H. et al. Versatile and clear MoS2 field-effect transistors on hexagonal boron nitride–graphene heterostructures. ACS Nano 7, 7931–7936 (2013).
Illarionov, Y. Y. et al. Ultrathin calcium fluoride insulators for two-dimensional field-effect transistors. Nat. Electron. 2, 230–235 (2019).
Liao, L. et al. Excessive-performance top-gated graphene-nanoribbon transistors utilizing zirconium oxide nanowires as high-dielectric-constant gate dielectrics. Adv. Mater. 22, 1941–1945 (2010).
Liao, L. et al. High-gated graphene nanoribbon transistors with ultrathin high-okay dielectrics. Nano Lett. 10, 1917–1921 (2010).
Liao, L. et al. Excessive-speed graphene transistors with a self-aligned nanowire gate. Nature 467, 305–308 (2010).
Cheng, R. et al. Excessive-frequency self-aligned graphene transistors with transferred gate stacks. Proc. Natl Acad. Sci. USA 109, 11588 (2012).
Cheng, R. et al. Few-layer molybdenum disulfide transistors and circuits for high-speed versatile electronics. Nat. Commun. 5, 5143 (2014).
Liu, Y. et al. Towards barrier free contact to molybdenum disulfide utilizing graphene electrodes. Nano Lett. 15, 3030–3034 (2015).
Liu, Y. et al. Approaching the Schottky–Mott restrict in van der Waals metallic–semiconductor junctions. Nature 557, 696–700 (2018).
Chen, P. et al. Approaching the intrinsic exciton physics restrict in two-dimensional semiconductor diodes. Nature 599, 404–410 (2021).
Wang, J. et al. Transferred metallic gate to 2D semiconductors for sub-1 V operation and close to excellent subthreshold slope. Sci. Adv. 7: eabf8744.
Wang, Y. et al. Probing photoelectrical transport in lead halide perovskites with van der Waals contacts. Nat. Nanotechnol. 15, 768–775 (2020).
Manchanda, L. & Gurvitch, M. Yttrium oxide/silicon dioxide: a brand new dielectric construction for VLSI/ULSI circuits. IEEE Electron System Lett. 9, 180–182 (1988).
Wang, Z. et al. Progress and efficiency of yttrium oxide as an excellent high-κ gate dielectric for carbon-based electronics. Nano Lett. 10, 2024–2030 (2010).
Durand, C. et al. Electrical property enhancements of yttrium oxide-based metallic–insulator–metallic capacitors. J. Vac. Sci. Technol. A 24, 459–466 (2006).
Liu, H. & Ye, P. D. MoS2 dual-gate MOSFET with atomic-layer-deposited Al2O3 as top-gate dielectric. IEEE Electron System Lett. 33, 546–548 (2012).
Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011).
Gurarslan, A. et al. Floor-energy-assisted excellent switch of centimeter-scale monolayer and few-layer MoS2 movies onto arbitrary substrates. ACS Nano 8, 11522–11528 (2014).
Li, T. et al. Epitaxial development of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 16, 1201–1207 (2021).
[ad_2]