Skip to main content
Log in

Probing and pushing the limit of emerging electronic materials via van der Waals integration

  • Review Article
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The continued scaling of silicon-based electronics is quickly approaching its fundamental material limit, which has motivated worldwide efforts in exploring new electronic materials and unconventional device architectures. In particular, two-dimensional (2D) atomic crystals, halide perovskites, and self-assembled molecular monolayers represent prominent examples of emerging electronic materials with significant promise for the continued miniaturization or function diversification. However, probing the fundamental transport properties and capturing the intrinsic merits of these emerging electronic materials are not always straightforward because they are usually delicate and prone to degradation during the conventional material integration and device fabrication steps. To this end, an alternative bond-free integration strategy, in which the pre-synthesized/fabricated material components are physically transferred and assembled together through weak van der Waals (vdW) force, offers a mild process for seamlessly combining highly disparate materials to form artificial heterostructures with atomically clean and electronically sharp interfaces, enabling the creation of high-performance devices for probing and pushing the limit of the emerging electronic materials. In this article, we summarize the efforts in our laboratory over the past 12 years, in developing, optimizing, and expanding the vdW integration strategy for creating and investigating high-performance devices from 2D atomic crystals, soft lattice halide perovskites, and self-assembled molecular monolayers. We also discuss how flexible vdW integration may enable a new generation of artificial materials, including vdW superlattices, vdW thin films or 3D frameworks. We conclude with a brief prospect on the critical challenges and emerging opportunities arising with this unique material integration strategy.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. G.E. Moore, Cramming more components onto integrated circuits. Reprinted from Electronics 38, 114 (1965) in IEEE Solid-State Circuits Soc. Newsl. 11, 33 (2006)

  2. J.D. Meindl, Q. Chen, J.A. Davis, Limits on silicon nanoelectronics for terascale integration. Science 293, 2044 (2001)

    Article  CAS  Google Scholar 

  3. International Roadmap for Devices and Systems (IRDS™), 2020 Edition (2020)

  4. R.H. Dennard, F.H. Gaensslen, H. Yu, V.L. Rideout, E. Bassous, A.R. LeBlanc, Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE J. Solid-State Circuits 9, 256 (1974)

    Article  Google Scholar 

  5. V. Chereja, A. Potarniche, S. Ranga, B.S. Kirei, M.D. Topa, Power Dissipation Estimation of CMOS Digital Circuits at the Gate Level in VHDL, in 2018 International Symposium on Electronics and Telecommunications (ISETC) (2018), p. 1.

  6. W.K. Henson, N. Yang, S. Kubicek, E.M. Vogel, J.J. Wortman, K.D. Meyer, A. Naem, Analysis of leakage currents and impact on off-state power consumption for CMOS technology in the 100-nm regime. IEEE Trans. Electron Devices 47, 1393 (2000)

    Article  CAS  Google Scholar 

  7. R. Yan, A. Ourmazd, K.F. Lee, Scaling the Si MOSFET: From bulk to SOI to bulk. IEEE Trans. Electron Devices 39, 1704 (1992)

    Article  CAS  Google Scholar 

  8. D. Flandre, S. Adriaensen, A. Akheyar, A. Crahay, L. Demeûs, P. Delatte, V. Dessard, B. Iniguez, A. Nève, B. Katschmarskyj, P. Loumaye, J. Laconte, I. Martinez, G. Picun, E. Rauly, C. Renaux, D. Spôte, M. Zitout, M. Dehan, B. Parvais, P. Simon, D. Vanhoenacker, J.P. Raskin, Fully depleted SOI CMOS technology for heterogeneous micropower, high-temperature or RF microsystems. Solid State Electron. 45, 541 (2001)

    Article  CAS  Google Scholar 

  9. I. Ferain, C.A. Colinge, J.-P. Colinge, Multigate transistors as the future of classical metal–oxide–semiconductor field-effect transistors. Nature 479, 310 (2011)

    Article  CAS  Google Scholar 

  10. R.S. Pal, S. Sharma, S. Dasgupta, Recent trend of FinFET devices and its challenges: A review, in 2017 Conference on Emerging Devices and Smart Systems (ICEDSS) (2017), p. 150.

  11. D. Yakimets, G. Eneman, P. Schuddinck, T.H. Bao, M.G. Bardon, P. Raghavan, A. Veloso, N. Collaert, A. Mercha, D. Verkest, A.V. Thean, K.D. Meyer, Vertical GAAFETs for the ultimate CMOS scaling. IEEE Trans. Electron Devices 62, 1433 (2015)

    Article  Google Scholar 

  12. S. Kim, M. Guillorn, I. Lauer, P. Oldiges, T. Hook, M. Na, Performance trade-offs in FinFET and gate-all-around device architectures for 7nm-node and beyond, in 2015 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S) (2015), p. 1.

  13. M. Heyns, W. Tsai, Ultimate scaling of CMOS logic devices with Ge and III–V materials. MRS Bull. 34, 485 (2009)

    Article  Google Scholar 

  14. N.P. Guisinger, M.S. Arnold, Beyond silicon: Carbon-based nanotechnology. MRS Bull. 35(4), 273 (2010)

    Article  Google Scholar 

  15. C. Huyghebaert, T. Schram, Q. Smets, T.K. Agarwal, D. Verreck, S. Brems, A. Phommahaxay, D. Chiappe, S.E. Kazzi, C.L.d.l. Rosa, G. Arutchelvan, D. Cott, J. Ludwig, A. Gaur, S. Sutar, A. Leonhardt, D. Marinov, D. Lin, M. Caymax, I. Asselberghs, G. Pourtois, I.P. Radu: 2D Materials: Roadmap to CMOS Integration, in 2018 IEEE International Electron Devices Meeting (IEDM) (2018), p. 22.1.1.

  16. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnár, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Spintronics: A spin-based electronics vision for the future. Science 294, 1488 (2001)

    Article  CAS  Google Scholar 

  17. V.K. Sangwan, M.C. Hersam, Neuromorphic nanoelectronic materials. Nat. Nanotechnol. 15, 517 (2020)

    Article  CAS  Google Scholar 

  18. Y. Tokura, M. Kawasaki, N. Nagaosa, Emergent functions of quantum materials. Nat. Phys. 13, 1056 (2017)

    Article  CAS  Google Scholar 

  19. E.W. Hill, A.K. Geim, K. Novoselov, F. Schedin, P. Blake, Graphene spin valve devices. IEEE Trans. Magn. 42, 2694 (2006)

    Article  Google Scholar 

  20. Q. Xia, W. Robinett, M.W. Cumbie, N. Banerjee, T.J. Cardinali, J.J. Yang, W. Wu, X. Li, W.M. Tong, D.B. Strukov, G.S. Snider, G. Medeiros-Ribeiro, R.S. Williams, Memristor−CMOS hybrid integrated circuits for reconfigurable logic. Nano Lett. 9, 3640 (2009)

    Article  CAS  Google Scholar 

  21. C. Jia, Z. Lin, Y. Huang, X. Duan, Nanowire electronics: From nanoscale to macroscale. Chem. Rev. 119, 9074 (2019)

    Article  CAS  Google Scholar 

  22. X. Duan, Assembled semiconductor nanowire thin films for high-performance flexible macroelectronics. MRS Bull. 32(2), 134 (2007)

    Article  CAS  Google Scholar 

  23. G. Hills, C. Lau, A. Wright, S. Fuller, M.D. Bishop, T. Srimani, P. Kanhaiya, R. Ho, A. Amer, Y. Stein, D. Murphy, Modern microprocessor built from complementary carbon nanotube transistors. Nature 572, 595 (2019)

    Article  CAS  Google Scholar 

  24. N.O. Weiss, H. Zhou, L. Liao, Y. Liu, S. Jiang, Y. Huang, X. Duan, Graphene: An emerging electronic material. Adv. Mater. 24, 5782 (2012)

    Article  CAS  Google Scholar 

  25. K.S. Novoselov, A. Mishchenko, A. Carvalho, A.H. Castro Neto, 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016)

    Article  CAS  Google Scholar 

  26. Y. Liu, N.O. Weiss, X. Duan, H.-C. Cheng, Y. Huang, X. Duan, Van der Waals heterostructures and devices. Nat. Rev. Mater. 1, 16042 (2016)

    Article  CAS  Google Scholar 

  27. P. Guyot-Sionnest, M.M. Ackerman, X. Tang, Colloidal quantum dots for infrared detection beyond silicon. J. Chem. Phys. 151, 060901 (2019)

    Article  CAS  Google Scholar 

  28. D. Xiang, X. Wang, C. Jia, T. Lee, X. Guo, Molecular-scale electronics: From concept to function. Chem. Rev. 116, 4318 (2016)

    Article  CAS  Google Scholar 

  29. T. Leijtens, K.A. Bush, R. Prasanna, M.D. McGehee, Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nat. Energy 3, 828 (2018)

    Article  CAS  Google Scholar 

  30. M. Kanechika, T. Uesugi, T. Kachi, Advanced SiC and GaN Power Electronics for Automotive Systems, in 2010 International Electron Devices Meeting (2010), p. 13.5.1.

  31. S.J. Pearton, F. Ren, M. Tadjer, J. Kim, Perspective: Ga2O3 for ultra-high power rectifiers and MOSFETS. J. Appl. Phys. 124, 220901 (2018)

    Article  CAS  Google Scholar 

  32. L. Meng, C. Sun, R. Wang, W. Huang, Z. Zhao, P. Sun, T. Huang, J. Xue, J.-W. Lee, C. Zhu, Y. Huang, Y. Li, Y. Yang, Tailored phase conversion under conjugated polymer enables thermally stable perovskite solar cells with efficiency exceeding 21%. J. Am. Chem. Soc. 140, 17255 (2018)

    Article  CAS  Google Scholar 

  33. K. Lin, J. Xing, L.N. Quan, F.P.G. de Arquer, X. Gong, J. Lu, L. Xie, W. Zhao, D. Zhang, C. Yan, W. Li, X. Liu, Y. Lu, J. Kirman, E.H. Sargent, Q. Xiong, Z. Wei, Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 562, 245 (2018)

    Article  CAS  Google Scholar 

  34. Y. Dong, Y. Zou, J. Song, X. Song, H. Zeng, Recent progress of metal halide perovskite photodetectors. J. Mater. Chem. C 5, 11369 (2017)

    Article  CAS  Google Scholar 

  35. F. Patolsky, B.P. Timko, G. Zheng, C.M. Lieber, Nanowire-based nanoelectronic devices in the life sciences. MRS Bull. 32(2), 142 (2007)

    Article  CAS  Google Scholar 

  36. L. Liu, Y. Liu, X. Duan, Graphene-based vertical thin film transistors. Sci. China Inf. Sci. 63, 201401 (2020)

    Article  Google Scholar 

  37. S.C. de la Barrera, M.R. Sinko, D.P. Gopalan, N. Sivadas, K.L. Seyler, K. Watanabe, T. Taniguchi, A.W. Tsen, X. Xu, D. Xiao, B.M. Hunt, Tuning Ising superconductivity with layer and spin–orbit coupling in two-dimensional transition-metal dichalcogenides. Nat. Commun. 9, 1427 (2018)

    Article  CAS  Google Scholar 

  38. C. Jia, M. Famili, M. Carlotti, Y. Liu, P. Wang, I.M. Grace, Z. Feng, Y. Wang, Z. Zhao, M. Ding, X. Xu, C. Wang, S.-J. Lee, Y. Huang, R.C. Chiechi, C.J. Lambert, X. Duan, Quantum interference mediated vertical molecular tunneling transistors. Sci. Adv. 4, eaat8237 (2018)

    Article  CAS  Google Scholar 

  39. Y. Liu, Y. Huang, X. Duan, Van der Waals integration before and beyond two-dimensional materials. Nature 567, 323 (2019)

    Article  CAS  Google Scholar 

  40. H. Haick, M. Ambrico, J. Ghabboun, T. Ligonzo, D. Cahen, Contacting organic molecules by metal evaporation. Phys. Chem. Chem. Phys. 6, 4538 (2004)

    Article  CAS  Google Scholar 

  41. R. Khan, B. Shong, B.G. Ko, J.K. Lee, H. Lee, J.Y. Park, I.-K. Oh, S.S. Raya, H.M. Hong, K.-B. Chung, E.J. Luber, Y.-S. Kim, C.-H. Lee, W.-H. Kim, H.-B.-R. Lee, Area-selective atomic layer deposition using Si precursors as inhibitors. Chem. Mater. 30, 7603 (2018)

    Article  CAS  Google Scholar 

  42. R.H.J. Vervuurt, W.M.M. Kessels, A.A. Bol, Atomic layer deposition for graphene device integration. Adv. Mater. Interfaces 4, 1700232 (2017)

    Article  CAS  Google Scholar 

  43. N. Li, Z. Wei, J. Zhao, Q. Wang, C. Shen, S. Wang, J. Tang, R. Yang, D. Shi, G. Zhang, Atomic layer deposition of Al2O3 directly on 2D materials for high-performance electronics. Adv. Mater. Interfaces 6, 1802055 (2019)

    Article  CAS  Google Scholar 

  44. Y. Huang, X. Duan, Q. Wei, C.M. Lieber, Directed assembly of one-dimensional nanostructures into functional networks. Science 291, 630 (2001)

    Article  CAS  Google Scholar 

  45. Y. Huang, X. Duan, C.M. Lieber, Nanowires for integrated multicolor nanophotonics. Small 1, 142 (2005)

    Article  CAS  Google Scholar 

  46. Y. Huang, X. Duan, Y. Cui, L.J. Lauhon, K.-H. Kim, C.M. Lieber, Logic gates and computation from assembled nanowire building blocks. Science 294, 1313 (2001)

    Article  CAS  Google Scholar 

  47. L. Liao, J. Bai, Y.-C. Lin, Y. Qu, Y. Huang, X. Duan, High-performance top-gated graphene-nanoribbon transistors using zirconium oxide nanowires as high-dielectric-constant gate dielectrics. Adv. Mater. 22, 1941 (2010)

    Article  CAS  Google Scholar 

  48. L. Liao, J. Bai, Y. Qu, Y.-C. Lin, Y. Li, Y. Huang, X. Duan, High-κ oxide nanoribbons as gate dielectrics for high mobility top-gated graphene transistors. Proc. Nat. Acad. Sci. USA 107, 6711 (2010)

    Article  CAS  Google Scholar 

  49. L. Liao, Y.-C. Lin, M. Bao, R. Cheng, J. Bai, Y. Liu, Y. Qu, K.L. Wang, Y. Huang, X. Duan, High-speed graphene transistors with a self-aligned nanowire gate. Nature 467, 305 (2010)

    Article  CAS  Google Scholar 

  50. L. Liao, J. Bai, R. Cheng, H. Zhou, L. Liu, Y. Liu, Y. Huang, X. Duan, Scalable fabrication of self-aligned graphene transistors and circuits on glass. Nano Lett. 12, 2653 (2012)

    Article  CAS  Google Scholar 

  51. R. Cheng, J. Bai, L. Liao, H. Zhou, Y. Chen, L. Liu, Y.-C. Lin, S. Jiang, Y. Huang, X. Duan, High-frequency self-aligned graphene transistors with transferred gate stacks. Proc. Nat. Acad. Sci. 109, 11588 (2012)

    Article  CAS  Google Scholar 

  52. R. Cheng, S. Jiang, Y. Chen, Y. Liu, N. Weiss, H.-C. Cheng, H. Wu, Y. Huang, X. Duan, Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics. Nat. Commun. 5, 5143 (2014)

    Article  CAS  Google Scholar 

  53. L. Britnell, R.V. Gorbachev, R. Jalil, B.D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M.I. Katsnelson, L. Eaves, S.V. Morozov, N.M.R. Peres, J. Leist, A.K. Geim, K.S. Novoselov, L.A. Ponomarenko, Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335, 947 (2012)

    Article  CAS  Google Scholar 

  54. W.J. Yu, Z. Li, H. Zhou, Y. Chen, Y. Wang, Y. Huang, X. Duan, Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters. Nat. Mater. 12, 246 (2013)

    Article  CAS  Google Scholar 

  55. W.J. Yu, Y. Liu, H. Zhou, A. Yin, Z. Li, Y. Huang, X. Duan, Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nat. Nanotechnol. 8, 952 (2013)

    Article  CAS  Google Scholar 

  56. R. Cheng, D. Li, H. Zhou, C. Wang, A. Yin, S. Jiang, Y. Liu, Y. Chen, Y. Huang, X. Duan, Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction pn diodes. Nano Lett. 14, 5590 (2014)

    Article  CAS  Google Scholar 

  57. F. Withers, O. Del Pozo-Zamudio, A. Mishchenko, A.P. Rooney, A. Gholinia, K. Watanabe, T. Taniguchi, S.J. Haigh, A.K. Geim, A.I. Tartakovskii, K.S. Novoselov, Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 14, 301 (2015)

    Article  CAS  Google Scholar 

  58. J. Li, X. Yang, Y. Liu, B. Huang, R. Wu, Z. Zhang, B. Zhao, H. Ma, W. Dang, Z. Wei, K. Wang, Z. Lin, X. Yan, M. Sun, B. Li, X. Pan, J. Luo, G. Zhang, Y. Liu, Y. Huang, X. Duan, X. Duan, General synthesis of two-dimensional van der Waals heterostructure arrays. Nature 579, 368 (2020)

    Article  CAS  Google Scholar 

  59. Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, X. Duan, Plasmon resonance enhanced multicolour photodetection by graphene. Nat. Commun. 2, 579 (2011)

    Article  CAS  Google Scholar 

  60. D. Sarkar, X. Xie, W. Liu, W. Cao, J. Kang, Y. Gong, S. Kraemer, P.M. Ajayan, K. Banerjee, A subthermionic tunnel field-effect transistor with an atomically thin channel. Nature 526, 91 (2015)

    Article  CAS  Google Scholar 

  61. Y. Liu, J. Guo, E. Zhu, L. Liao, S.-J. Lee, M. Ding, I. Shakir, V. Gambin, Y. Huang, X. Duan, Approaching the Schottky-Mott limit in van der Waals metal–semiconductor junctions. Nature 557, 696 (2018)

    Article  CAS  Google Scholar 

  62. C. Qiu, F. Liu, L. Xu, B. Deng, M. Xiao, J. Si, L. Lin, Z. Zhang, J. Wang, H. Guo, H. Peng, L.-M. Peng, Dirac-source field-effect transistors as energy-efficient, high-performance electronic switches. Science 361, 387 (2018)

    Article  CAS  Google Scholar 

  63. Y. Wang, Z. Wan, Q. Qian, Y. Liu, Z. Kang, Z. Fan, P. Wang, Y. Wang, C. Li, C. Jia, Z. Lin, J. Guo, I. Shakir, M. Goorsky, X. Duan, Y. Zhang, Y. Huang, X. Duan, Probing photoelectrical transport in lead halide perovskites with van der Waals contacts. Nat. Nanotechnol. 15, 768 (2020)

    Article  CAS  Google Scholar 

  64. A.K. Geim, I.V. Grigorieva, Van der Waals heterostructures. Nature 499, 419 (2013)

    Article  CAS  Google Scholar 

  65. Y. Liu, P. Wang, Y. Wang, Z. Lin, H. Liu, J. Huang, Y. Huang, X. Duan, van der Waals integrated devices based on nanomembranes of 3D materials. Nano Lett. 20, 1410 (2020)

    Article  CAS  Google Scholar 

  66. J.A. Amick, G.L. Schnable, J.L. Vossen, Deposition techniques for dielectric films on semiconductor devices. J. Vac. Sci. Technol. 14, 1053 (1977)

    Article  CAS  Google Scholar 

  67. J.H. Park, H.C.P. Movva, E. Chagarov, K. Sardashti, H. Chou, I. Kwak, K.-T. Hu, S.K. Fullerton-Shirey, P. Choudhury, S.K. Banerjee, A.C. Kummel, In situ observation of initial stage in dielectric growth and deposition of ultrahigh nucleation density dielectric on two-dimensional surfaces. Nano Lett. 15, 6626 (2015)

    Article  CAS  Google Scholar 

  68. A. Leonhardt, D. Chiappe, V.V. Afanas’ev, S. El Kazzi, I. Shlyakhov, T. Conard, A. Franquet, C. Huyghebaert, S. de Gendt, Material-selective doping of 2D TMDC through AlxOy encapsulation. ACS Appl. Mater. Interfaces 11, 42697 (2019)

    Article  CAS  Google Scholar 

  69. A.F. Palmstrom, J.A. Raiford, R. Prasanna, K.A. Bush, M. Sponseller, R. Cheacharoen, M.C. Minichetti, D.S. Bergsman, T. Leijtens, H.-P. Wang, V. Bulović, M.D. McGehee, S.F. Bent, Interfacial effects of tin oxide atomic layer deposition in metal halide perovskite photovoltaics. Adv. Energy Mater. 8, 1800591 (2018)

    Article  CAS  Google Scholar 

  70. L. Liao, X. Duan, Graphene–dielectric integration for graphene transistors. Mater. Sci. Eng. Res. 70, 354 (2010)

    Article  CAS  Google Scholar 

  71. L. Liao, J. Bai, R. Cheng, Y.-C. Lin, S. Jiang, Y. Huang, X. Duan, Top-gated graphene nanoribbon transistors with ultrathin high-k dielectrics. Nano Lett. 10, 1917 (2010)

    Article  CAS  Google Scholar 

  72. S.M. Sze, K.K. Ng, Physics of Semiconductor Devices, 3rd ed. (Wiley, Hoboken, NJ, 2006)

    Book  Google Scholar 

  73. A.M. Cowley, S.M. Sze, Surface states and barrier height of metal-semiconductor systems. J. Appl. Phys. 36, 3212 (1965)

    Article  CAS  Google Scholar 

  74. C. Kim, I. Moon, D. Lee, M.S. Choi, F. Ahmed, S. Nam, Y. Cho, H.-J. Shin, S. Park, W.J. Yoo, Fermi level pinning at electrical metal contacts of monolayer molybdenum dichalcogenides. ACS Nano 11, 1588 (2017)

    Article  CAS  Google Scholar 

  75. R.T. Tung, The physics and chemistry of the Schottky barrier height. Appl. Phys. Rev. 1, 011304 (2014)

    Article  CAS  Google Scholar 

  76. A.Y.C. Yu, Electron tunneling and contact resistance of metal-silicon contact barriers. Solid State Electron. 13, 239 (1970)

    Article  Google Scholar 

  77. D.S. Schulman, A.J. Arnold, S. Das, Contact engineering for 2D materials and devices. Chem. Soc. Rev. 47, 3037 (2018)

    Article  CAS  Google Scholar 

  78. Y. Liu, P. Stradins, S.-H. Wei, Van der Waals metal-semiconductor junction: Weak Fermi level pinning enables effective tuning of Schottky barrier. Sci. Adv. 2, e1600069 (2016)

    Article  CAS  Google Scholar 

  79. Y. Liu, H. Wu, H.-C. Cheng, S. Yang, E. Zhu, Q. He, M. Ding, D. Li, J. Guo, N.O. Weiss, Y. Huang, X. Duan, Toward barrier free contact to molybdenum disulfide using graphene electrodes. Nano Lett. 15, 3030 (2015)

    Article  CAS  Google Scholar 

  80. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81, 109 (2009)

    Article  CAS  Google Scholar 

  81. Y.-J. Yu, Y. Zhao, S. Ryu, L.E. Brus, K.S. Kim, P. Kim, Tuning the graphene work function by electric field effect. Nano Lett. 9, 3430 (2009)

    Article  CAS  Google Scholar 

  82. W.S. Leong, X. Luo, Y. Li, K.H. Khoo, S.Y. Quek, J.T.L. Thong, Low resistance metal contacts to MoS2 devices with nickel-etched-graphene electrodes. ACS Nano 9, 869 (2015)

    Article  CAS  Google Scholar 

  83. Y. Liu, J. Guo, Y. Wu, E. Zhu, N.O. Weiss, Q. He, H. Wu, H.-C. Cheng, Y. Xu, I. Shakir, Y. Huang, X. Duan, Pushing the performance limit of sub-100 nm molybdenum disulfide transistors. Nano Lett. 16, 6337 (2016)

    Article  CAS  Google Scholar 

  84. M. Farmanbar, G. Brocks, Ohmic contacts to 2D semiconductors through van der Waals bonding. Adv. Electron. Mater. 2, 1500405 (2016)

    Article  CAS  Google Scholar 

  85. Y. Wang, J.C. Kim, R.J. Wu, J. Martinez, X. Song, J. Yang, F. Zhao, A. Mkhoyan, H.Y. Jeong, M. Chhowalla, Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature 568, 70 (2019)

    Article  CAS  Google Scholar 

  86. L. Kong, X. Zhang, Q. Tao, M. Zhang, W. Dang, Z. Li, L. Feng, L. Liao, X. Duan, Y. Liu, Doping-free complementary WSe2 circuit via van der Waals metal integration. Nat. Commun. 11, 1866 (2020)

    Article  CAS  Google Scholar 

  87. F. Schwierz, Graphene transistors. Nat. Nanotechnol. 5, 487 (2010)

    Article  CAS  Google Scholar 

  88. W.J. Yu, Q.A. Vu, H. Oh, H.G. Nam, H. Zhou, S. Cha, J.-Y. Kim, A. Carvalho, M. Jeong, H. Choi, A.H. Castro Neto, Y.H. Lee, X. Duan, Unusually efficient photocurrent extraction in monolayer van der Waals heterostructure by tunnelling through discretized barriers. Nat. Commun. 7, 13278 (2016)

    Article  CAS  Google Scholar 

  89. D. Li, R. Cheng, H. Zhou, C. Wang, A. Yin, Y. Chen, N.O. Weiss, Y. Huang, X. Duan, Electric-field-induced strong enhancement of electroluminescence in multilayer molybdenum disulfide. Nat. Commun. 6, 7509 (2015)

    Article  Google Scholar 

  90. Y. Liu, J. Guo, E. Zhu, P. Wang, V. Gambin, Y. Huang, X. Duan, Maximizing the current output in self-aligned graphene–InAs–metal vertical transistors. ACS Nano 13, 847 (2019)

    Article  CAS  Google Scholar 

  91. Y. Liu, H. Zhou, R. Cheng, W. Yu, Y. Huang, X. Duan, Highly flexible electronics from scalable vertical thin film transistors. Nano Lett. 14, 1413 (2014)

    Article  CAS  Google Scholar 

  92. Y. Liu, H. Zhou, N.O. Weiss, Y. Huang, X. Duan, High-performance organic vertical thin film transistor using graphene as a tunable contact. ACS Nano 9, 11102 (2015)

    Article  CAS  Google Scholar 

  93. H.T. Yi, X. Wu, X. Zhu, V. Podzorov, Intrinsic charge transport across phase transitions in hybrid organo-inorganic perovskites. Adv. Mater. 28, 6509 (2016)

    Article  CAS  Google Scholar 

  94. S. Kubatkin, A. Danilov, M. Hjort, J. Cornil, J.-L. Brédas, N. Stuhr-Hansen, P. Hedegård, T. Bjørnholm, Single-electron transistor of a single organic molecule with access to several redox states. Nature 425, 698 (2003)

    Article  CAS  Google Scholar 

  95. C. Jia, A. Migliore, N. Xin, S. Huang, J. Wang, Q. Yang, S. Wang, H. Chen, D. Wang, B. Feng, Z. Liu, G. Zhang, D.-H. Qu, H. Tian, M.A. Ratner, H.Q. Xu, A. Nitzan, X. Guo, Covalently bonded single-molecule junctions with stable and reversible photoswitched conductivity. Science 352, 1443 (2016)

    Article  CAS  Google Scholar 

  96. X. Guo, Biosensors: Single-molecule electrical biosensors based on single-walled carbon nanotubes. Adv. Mater. 25, 3390 (2013)

    Article  CAS  Google Scholar 

  97. J.E. Green, J. Wook Choi, A. Boukai, Y. Bunimovich, E. Johnston-Halperin, E. DeIonno, Y. Luo, B.A. Sheriff, K. Xu, Y. Shik Shin, H.-R. Tseng, J.F. Stoddart, J.R. Heath, A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre. Nature 445, 414 (2007)

    Article  CAS  Google Scholar 

  98. J.R. Petta, S.K. Slater, D.C. Ralph, Spin-dependent transport in molecular tunnel junctions. Phys. Rev. Lett. 93, 136601 (2004)

    Article  CAS  Google Scholar 

  99. G.D. Kong, S.E. Byeon, S. Park, H. Song, S.-Y. Kim, H.J. Yoon, Mixed molecular electronics: Tunneling behaviors and applications of mixed self-assembled monolayers. Adv. Electron. Mater. 6, 1901157 (2020)

    Article  CAS  Google Scholar 

  100. M. Famili, C. Jia, X. Liu, P. Wang, I.M. Grace, J. Guo, Y. Liu, Z. Feng, Y. Wang, Z. Zhao, S. Decurtins, R. Häner, Y. Huang, S.-X. Liu, C.J. Lambert, X. Duan, Self-assembled molecular-electronic films controlled by room temperature quantum interference. Chem 5, 474 (2019)

    Article  CAS  Google Scholar 

  101. C. Jia, I.M. Grace, P. Wang, A. Almeshal, Z. Huang, Y. Wang, P. Chen, L. Wang, J. Zhou, Z. Feng, Z. Zhao, Y. Huang, C.J. Lambert, X. Duan, Redox control of charge transport in vertical ferrocene molecular tunnel junctions. Chem 6, 1172 (2020)

    Article  CAS  Google Scholar 

  102. S.-J. Lee, Z. Lin, J. Huang, C.S. Choi, P. Chen, Y. Liu, J. Guo, C. Jia, Y. Wang, L. Wang, Q. Liao, I. Shakir, X. Duan, B. Dunn, Y. Zhang, Y. Huang, X. Duan, Programmable devices based on reversible solid-state doping of two-dimensional semiconductors with superionic silver iodide. Nat. Electron. 3, 630 (2020)

    Article  CAS  Google Scholar 

  103. J.-H. Cha, D.-Y. Jung, Air-stable transparent silver iodide-copper iodide heterojunction diode. ACS Appl. Mater. Interfaces 9, 43807 (2017)

    Article  CAS  Google Scholar 

  104. J. Guo, L. Wang, Y. Liu, Z. Zhao, E. Zhu, Z. Lin, P. Wang, C. Jia, S. Yang, S.-J. Lee, W. Huang, Y. Huang, X. Duan, Highly reliable low-voltage memristive switching and artificial synapse enabled by van der Waals integration. Matter 2, 965 (2020)

    Article  Google Scholar 

  105. W. Huh, D. Lee, C.-H. Lee, Memristors based on 2D materials as an artificial synapse for neuromorphic electronics. Adv. Mater. 32, 2002092 (2020)

    Article  CAS  Google Scholar 

  106. M.C. Lemme, S. Wagner, K. Lee, X. Fan, G.J. Verbiest, S. Wittmann, S. Lukas, R.J. Dolleman, F. Niklaus, H.S.J. van der Zant, G.S. Duesberg, P.G. Steeneken, Nanoelectromechanical sensors based on suspended 2D materials. Research 2020, 8748602 (2020)

    Article  CAS  Google Scholar 

  107. C. Anichini, W. Czepa, D. Pakulski, A. Aliprandi, A. Ciesielski, P. Samorì, Chemical sensing with 2D materials. Chem. Soc. Rev. 47, 4860 (2018)

    Article  CAS  Google Scholar 

  108. Y.-C. Huang, Y. Liu, C. Ma, H.-C. Cheng, Q. He, H. Wu, C. Wang, C.-Y. Lin, Y. Huang, X. Duan, Sensitive pressure sensors based on conductive microstructured air-gap gates and two-dimensional semiconductor transistors. Nat. Electron. 3, 59 (2020)

    Article  CAS  Google Scholar 

  109. C. Ma, D. Xu, Y.-C. Huang, P. Wang, J. Huang, J. Zhou, W. Liu, S.-T. Li, Y. Huang, X. Duan, Robust flexible pressure sensors made from conductive micropyramids for manipulation tasks. ACS Nano 14, 12866 (2020)

    Article  CAS  Google Scholar 

  110. S. Masubuchi, M. Morimoto, S. Morikawa, M. Onodera, Y. Asakawa, K. Watanabe, T. Taniguchi, T. Machida, Autonomous robotic searching and assembly of two-dimensional crystals to build van der Waals superlattices. Nat. Commun. 9, 1413 (2018)

    Article  CAS  Google Scholar 

  111. Z. Lin, Y. Huang, X. Duan, Van der Waals thin-film electronics. Nat. Electron. 2, 378 (2019)

    Article  Google Scholar 

  112. Y. Xu, Z. Lin, X. Zhong, X. Huang, N.O. Weiss, Y. Huang, X. Duan, Holey graphene frameworks for highly efficient capacitive energy storage. Nat. Commun. 5, 4554 (2014)

    Article  CAS  Google Scholar 

  113. X. Xu, Q. Zhang, M. Hao, Y. Hu, Z. Lin, L. Peng, T. Wang, X. Ren, C. Wang, Z. Zhao, C. Wan, H. Fei, L. Wang, J. Zhu, H. Sun, W. Chen, T. Du, B. Deng, G.J. Cheng, I. Shakir, C. Dames, T.S. Fisher, X. Zhang, H. Li, Y. Huang, X. Duan, Double-negative-index ceramic aerogels for thermal superinsulation. Science 363, 723 (2019)

    Article  CAS  Google Scholar 

  114. C. Wang, Q. He, U. Halim, Y. Liu, E. Zhu, Z. Lin, H. Xiao, X. Duan, Z. Feng, R. Cheng, N.O. Weiss, G. Ye, Y.-C. Huang, H. Wu, H.-C. Cheng, I. Shakir, L. Liao, X. Chen, W.A. Goddard III, Y. Huang, X. Duan, Monolayer atomic crystal molecular superlattices. Nature 555, 231 (2018)

    Article  CAS  Google Scholar 

  115. Z. Lin, Y. Liu, U. Halim, M. Ding, Y. Liu, Y. Wang, C. Jia, P. Chen, X. Duan, C. Wang, F. Song, M. Li, C. Wan, Y. Huang, X. Duan, Solution-processable 2D semiconductors for high-performance large-area electronics. Nature 562, 254 (2018)

    Article  CAS  Google Scholar 

  116. Z. Lin, Y. Chen, A. Yin, Q. He, X. Huang, Y. Xu, Y. Liu, X. Zhong, Y. Huang, X. Duan, Solution processable colloidal nanoplates as building blocks for high-performance electronic thin films on flexible substrates. Nano Lett. 14, 6547 (2014)

    Article  CAS  Google Scholar 

  117. H. Sun, L. Mei, J. Liang, Z. Zhao, C. Lee, H. Fei, M. Ding, J. Lau, M. Li, C. Wang, X. Xu, G. Hao, B. Papandrea, I. Shakir, B. Dunn, Y. Huang, X. Duan, Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage. Science 356, 599 (2017)

    Article  CAS  Google Scholar 

  118. Y. Xu, X. Huang, Z. Lin, X. Zhong, Y. Huang, X. Duan, One-step strategy to graphene/Ni(OH)2 composite hydrogels as advanced three-dimensional supercapacitor electrode materials. Nano Res. 6, 65 (2013)

    Article  CAS  Google Scholar 

  119. Y. Cai, J. Shen, C.-W. Yang, Y. Wan, H.-L. Tang, A.A. Aljarb, C. Chen, J.-H. Fu, X. Wei, K.-W. Huang, Y. Han, S.J. Jonas, X. Dong, V. Tung, Mixed-dimensional MXene-hydrogel heterostructures for electronic skin sensors with ultrabroad working range. Sci. Adv. 6, eabb5367 (2020)

    Article  CAS  Google Scholar 

  120. M. Lanza, Q. Smets, C. Huyghebaert, L.-J. Li, Yield, variability, reliability, and stability of two-dimensional materials based solid-state electronic devices. Nat. Commun. 11, 5689 (2020)

    Article  CAS  Google Scholar 

  121. Q. Wang, N. Li, J. Tang, J. Zhu, Q. Zhang, Q. Jia, Y. Lu, Z. Wei, H. Yu, Y. Zhao, Y. Guo, L. Gu, G. Sun, W. Yang, R. Yang, D. Shi, G. Zhang, Wafer-scale highly oriented monolayer MoS2 with large domain sizes. Nano Lett. 20, 7193 (2020)

    Article  CAS  Google Scholar 

  122. Z. Zhang, P. Chen, X. Yang, Y. Liu, H. Ma, J. Li, B. Zhao, J. Luo, X. Duan, X. Duan, Ultrafast growth of large single crystals of monolayer WS2 and WSe2. Natl. Sci. Rev. 7, 737 (2020)

    Article  CAS  Google Scholar 

  123. W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A.J. Neukirch, G. Gupta, J.J. Crochet, M. Chhowalla, S. Tretiak, M.A. Alam, H.-L. Wang, A.D. Mohite, High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 347, 522 (2015)

    Article  CAS  Google Scholar 

  124. Y. Wang, C. Jia, Z. Fan, Z. Lin, S.-J. Lee, T.L. Atallah, J.R. Caram, Y. Huang, X. Duan, Large-area synthesis and patterning of all-inorganic lead halide perovskite thin films and heterostructures. Nano Lett. 21, 1454 (2021)

    Article  CAS  Google Scholar 

  125. R. Frisenda, E. Navarro-Moratalla, P. Gant, D. Pérez De Lara, P. Jarillo-Herrero, R.V. Gorbachev, A. Castellanos-Gomez, Recent progress in the assembly of nanodevices and van der Waals heterostructures by deterministic placement of 2D materials. Chem. Soc. Rev. 47, 53 (2018)

    Article  CAS  Google Scholar 

  126. S. Toyoda, T. Uwanno, T. Taniguchi, K. Watanabe, K. Nagashio, Pinpoint pick-up and bubble-free assembly of 2D materials using PDMS/PMMA polymers with lens shapes. Appl. Phys. Express 12, 055008 (2019)

    Article  CAS  Google Scholar 

  127. S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y.I. Song, Y.-J. Kim, K.S. Kim, B. Özyilmaz, J.-H. Ahn, B.H. Hong, S. Iijima, Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5, 574 (2010)

    Article  CAS  Google Scholar 

  128. J. Li, P. Song, J. Zhao, K. Vaklinova, X. Zhao, Z. Li, Z. Qiu, Z. Wang, L. Lin, M. Zhao, T.S. Herng, Y. Zuo, W. Jonhson, W. Yu, X. Hai, P. Lyu, H. Xu, H. Yang, C. Chen, S.J. Pennycook, J. Ding, J. Teng, A.H. Castro Neto, K.S. Novoselov, J. Lu, Printable two-dimensional superconducting monolayers. Nat. Mater. 20, 181 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

X.D. acknowledges financial support by the Office of Naval Research through Grant No. N00014-18-1-2707.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangfeng Duan.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Duan, X. Probing and pushing the limit of emerging electronic materials via van der Waals integration. MRS Bulletin 46, 534–546 (2021). https://doi.org/10.1557/s43577-021-00130-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43577-021-00130-3

Keywords

Navigation