Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe

XZ Yu, N Kanazawa, Y Onose, K Kimoto, WZ Zhang… - Nature materials, 2011 - nature.com
XZ Yu, N Kanazawa, Y Onose, K Kimoto, WZ Zhang, S Ishiwata, Y Matsui, Y Tokura
Nature materials, 2011nature.com
Abstract The skyrmion,,,, a vortex-like spin-swirling object, is anticipatedto play a vital role in
quantum magneto-transport processes such as the quantum Hall and topological Hall
effects,,. The existence of the magnetic skyrmion crystal (SkX) state was recently verified
experimentally for MnSi and Fe0. 5Co0. 5Si by means of small-angle neutron scattering, and
Lorentz transmission electron microscopy. However, to enable the application of such a SkX
for spintronic function, materials problems such as a low crystallization temperature and low …
Abstract
The skyrmion,,,, a vortex-like spin-swirling object, is anticipatedto play a vital role in quantum magneto-transport processes such as the quantum Hall and topological Hall effects,,. The existence of the magnetic skyrmion crystal (SkX) state was recently verified experimentally for MnSi and Fe0.5Co0.5Si by means of small-angle neutron scattering, and Lorentz transmission electron microscopy. However, to enable the application of such a SkX for spintronic function, materials problems such as a low crystallization temperature and low stability of SkX have to be overcome. Here we report the formation of SkX close to room temperature in thin-films of the helimagnet FeGe. In addition to the magnetic twin structure, we found a magnetic chirality inversion of the SkX across lattice twin boundaries. Furthermore, for thin crystal plates with thicknesses much smaller than the SkX lattice constant (as) the two-dimensional SkX is quite stable over a wide range of temperatures and magnetic fields, whereas for quasi-three-dimensional films with thicknesses over as the SkX is relatively unstable and observed only around the helical transition temperature. The room-temperature stable SkX state as promised by this study will pave a new path to designing quantum-effect devices based on the controllable skyrmion dynamics.
nature.com